
4 May 2007 LIGO-G070283-00-K

Pendulum Modeling in
Mathematica™ and Matlab™

IGR Thermal Noise Group Meeting
4 May 2007



4 May 2007 LIGO-G070283-00-K 2

The X-Pendulum
 Developed as a low frequency vibration isolator for TAMA

2D version1D version
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Pendulum Modelling
 Wanted an AdvLIGO SUS design model to go beyond the

Matlab model of Torrie, Strain et al.
 Desired features:

» Full 3D with provision for asymmetries
» Proper blade model
» Wire bending elasticity
» Arbitrary damping and consequent thermal noise
» Export to other environments such as Matlab/Simulink and E2E.

 Mathematica code originally developed for modeling the X-
pendulum was available -> reuse and extend.

 See http://www.ligo.caltech.edu/~e2e/SUSmodels
 Manual: T020205-00 (-01 pending)
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The Toolkit
 The toolkit is a Mathematica “package”, PendUtil.nb, for specifying

different configurations (e.g., quad, triple etc) in a (relatively) user-
friendly way

 Supported features:
» 6-DOF rigid bodies for masses (no internal modes)
» Springs described by an elasticity tensor and a vector of pre-load forces
» Massless wires (i.e., no violin modes) but detailed elasticity model from beam equation
» Arbitrary frequency-dependent damping on all sources of elasticity
» Symbolic up to the point of minimizing the potential to find the equilibrium position
» Calculates elasticity and mass matrices semi-numerically (symbolic partial derivatives of

functions with mostly numeric coefficients)
» Eigenfrequencies and eigenmodes calculated numerically
» Arbitrary frequency dependent damping on each different elastic element
» Transfer functions
» Thermal noise plots
» Export of state-space matrices to Matlab and E2E



4 May 2007 LIGO-G070283-00-K 5

Models
 Two major families of models have been defined:

» The triple models reflect a generic GEO-style pendulum with 3 masses, 6
blade springs and 10 wires.

» The quad models reflect a standard AdvLIGO quad pendulum, with 4
masses, 6 blade springs and 14 wires.

 Many toy models
» LIGO-I two-wire pendulum
» Simple pendulum
» Simple pendulum on a blade spring
» Etc

 Steep learning curve but a major new model can be
programmed in a day by an experienced user
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Triple Pendulum Model

 2 blade springs
 2 wires
 “upper” mass
 4 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic
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Quad Pendulum
 2 blade springs
 2 wires
 “top” mass
 2 blade springs
 4 wires
 “upper” mass
 2 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic

7

 

 



4 May 2007 LIGO-G070283-00-K 8

Defining a Model (i)
 Define the “variables” (cf. x in the theory - example from

the xtra-lite triple):
 allvars = {

» x1,y1,z1,yaw1,pitch1,roll1,

» x2,y2,z2,yaw2,pitch2,roll2,

» x3,y3,z3,yaw3,pitch3,roll3

 };

 Define the “floats” (cf. q in the theory):
» allfloats = {

–qul,qur,qlf,qlb,qrf,qrb
» };

 Define the “parameters” (cf. s in the theory):
 allparams = {

» x00, y00, z00, yaw00, pitch00, roll00

 };
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Defining a Model (ii)
 Define coordinate lists for rigid bodies of interest:
 optic = {x3, y3, z3, yaw3, pitch3, roll3};

 support = {x00, y00, z00, yaw00, pitch00, roll00};

 Define coordinate lists for points on rigid bodies
 massUl={0,-n1,d0}; (* left wire attachment point on upper mass *)

 Define list of gravitational potential terms:
 gravlist = {}; (* initialize list *)

 AppendTo[gravlist, m3 g z3]; (* typical item *)

9
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Defining a Model (iii)
 Define list of wires, each with the following format
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment vector for first mass,

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment vector for second mass,

» Young's modulus,

» unstretched length,

» longitudinal elasticity,

» vector defining principal axis 1,

» moment of area along principal axis 1,

» moment of area along principal axis 2,

» linear elasticity type,

» angular elasticity type,

» torsional elasticity type,

» shear modulus,

» cross sectional area for torsional calculations,
»       torsional stiffness geometric factor

 }
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Defining a Model (iv)
 Define list of springs, each with following format:
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment angles for first mass (yaw, pitch, roll),

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment angles for second mass (yaw, pitch, roll),

» damping type,

» 6x6 elasticity matrix,

» 1*6 pre-load force/torque vector

 }

 Define kinetic energy
 IM3 = {{I3x, 0, 0}, {0, I3y, 0}, {0, 0, I3z}}; (* typical MOI tensor)

 kinetic = (

» …

» +(1/2) m3 Plus@@(Dt[b2s[optic,COM],t]^2)

» +(1/2) omegaB[yaw3, pitch3, roll3].IM3.omegaB[yaw3, pitch3, roll3]

» …

 );
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Defining a Model (v)
 Define default values of constants
 defaultvalues = {

» g -> 9.81, (* value given numerically *)

» …

» m3 -> Pi*r3^2*t3, (* value given in terms of other constants *)

» …

» x00 -> 0, (* value for nominal position of structure *)

» y00 -> 0,

» z00 -> 0,

» …

» damping[imag,dampingtype] -> (phi&) (* value for frequency dependence of damping *)

» …

 };

 Define starting point for finding equilibrium position:
 startpos = {

» x1 ->0,

» y1 ->0,

» …

 };
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Defining a Model (vi)
 Define model-specific utilities:

» A function to list eigenmodes in a table
»         pretty[eigenvector]

» A function to plot eigenmode shapes
»         eigenplot[eigenvector, amplitude, {viewpoint}]

» Vectors representing force and displacement inputs and displacement
outputs of interest

»         structurerollinput = makeinputvector[roll00];

»         opticxinput = makefinputvector[x3];

»           opticx = makeoutputvector[x3];

» Rotation matrices to put angle variables in a more easily interpretable
basis:

»           e2ni;

13
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Sample Output (i)
 Transfer function

from x
displacement of
support to x
motion of optic
(quad model,
reference
parameters of
20031114):
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Damping
 Damping can be represented by a complex elastic

modulus:

 Strictly, the Kramers-Kronig relation applies:

 However often the variation in the real part can be ignored:

 Need to consider total potential as sum of terms, each with
different damping:
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Sample Output (ii)
 Thermal noise in

x motion of optic
(quad model,
reference
parameters of
20031114):
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Export to Matlab/Simulink
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Export to E2E
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Application to Quad Controls

 Good agreement
after adding lots of
new physics:
» Improved wire

flexure correction
» Blade lateral

compliance
» Blade geometric

antispring effect
» Non-diagonal

moment of inertia
tensors

ID
pitch
x
y
z
yaw
roll
x
y
pitch
yaw
x
y
z
yaw
pitch
roll
yaw
pitch?
roll
x
z
roll
z
roll

f (theory)
0.395
0.443
0.464
0.595
0.685
0.810
0.987
1.043
1.167
1.428
1.981
2.095
2.362
2.538
2.818
2.762
3.167
3.228
3.332
3.401
3.793
5.120

17.700
25.741

f (exp)
0.403
0.440
0.464
0.549
0.684
0.794
0.989
1.038
1.355
1.428
1.978
2.075
2.222
2.515
2.576
2.734
3.149
3.162
3.333
3.381
3.589
5.029

?
?
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Dissipation Dilution
 Often said: main restoring force in a pendulum is

gravitational therefore no loss -> “dissipation dilution”
 Not true!

 Gravitational force is purely vertical.
 Actual restoring force is sideways component of tension in

wire
 Gravity’s only contribution is to tension the wire.
 Other forms of tension are equivalent (cf. violin modes also

low-loss
 What is it about tension?

20



4 May 2007 LIGO-G070283-00-K 21

 Mass on spring
 Force:
 Frequency:
 Amplitude (phasor):
 Velocity (phasor):
 Force (phasor):
 Power (average):
 Energy (max):
 Decay time (energy):
 Decay time (amp.)

Non-dilution case (vertical)
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Dilution case (horizontal - exactly)
 Constrain mass to move exactly

horizontally

 Restoring force:
 Spring constant:
 Frequency:
 Length:
 Power:
 Energy:

 Energy still 2nd order but power 4th order
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But what about pendulums?!
 In a pendulum, mass really moves on an arc.
 Doesn’t matter!
 Normal mode analysis can’t tell the difference!
 Eigenmodes are always linear in coordinates used.
 Analyze in r,theta -> eigenmode is arc
 Analyze in x, z -> eigenmode is straight line
 Same frequencies!
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What about pendulums (ii)

24

 Two independent reasons why pendulums have low loss.
» Restoring force is sideways component of tension
» Energy may then be off-loaded into gravitational potential -> stretch of spring

less even than second order

 Depends on bounce and pendulum mode frequencies
» Usual case, bounce frequency high -> mass moves on arc.
» Very low bounce frequencies (superspring) -> mass really does move

horizontally
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Dissipation Dilution and
Mathematica Toolkit

 Solution used in toolkit:
» Keep a separate stiffness matrix Pi for each elastic element
» For all elasticity types that depend on tension
» Compute potential matrix once normally
» Recompute with tension zeroed out.
» Apply damping to stiffness components that persist with tension off

 Need to do analogous thing for ANSYS
 Difficult because detailed potential data not available, or at

least not easy to access.
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Test Case for ANSYS: Violin
modes of a fibre

 Fibre under tension behaves as
if shortened by flexure correction
at each end

 Energy of two types
» Longitudinal stretching from bending out

of straight line (low-loss)

» Bending energy (lossy)

 

 

 

EVB =
YI

2

d
2
y

dl
2

!
"#

$
%&0

L

'
2

dl

EVL =
T

2

dy

dx

!
"#

$
%&
2

dx
0

L

'

Sinusoid

End correction

Total



4 May 2007 LIGO-G070283-00-K 27

Fibre results
 Fused silica, 350 mm long, 0.45

mm diameter
 Integrand of the two types

» Longitudinal ->
» Total 17.3 mJ for 10 mm amplitude

» Bending ->
» Total 0.256 mJ for 10 mm amplitude

 Dissipation dilution factor 67.6
 Will compare to ANSYS

 

 


