

Unravelling short GRBs with LIGO, Swift and GLAST

Warning:

Flight: 1pm @ O'Hare

Leaving at 11.30

Email: oshaughn@northwestern.edu

6

Richard O'Shaughnessy

ANL GLAST Workshop April 13, 2007

LIGO-G070250-00-0

Outline

- Short GRBs: Where are we now with Swift?
 - Good
 - Bad : Biases
- How can LIGO help?
 - Detections are powerful (in coincidence)
 - Merger detections unlikely
 - Nondetections still useful
- Big picture: Swift+GLAST+LIGO
- Scientific payoff near...
 - **Example**: Swift/BATSE vs theory *alone* + BH-NS mergers
 - Further examples (if time permits)
 - Galactic pulsars vs theory
 - Pulsars+LIGO vs theory
 - GRBs+pulsars vs theory : GRBs

Collaborators

- V. Kalogera
- C. Kim
- K. Belczynski
- T. Fragos

Northwestern Cornell New Mexico State/Los Alamos Northwestern [he's here!]

• LSC

(official LIGO results)

Short GRBs: Where are we with Swift?

See Nakar 2007

astro-ph/0701748

<u>z</u>)

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

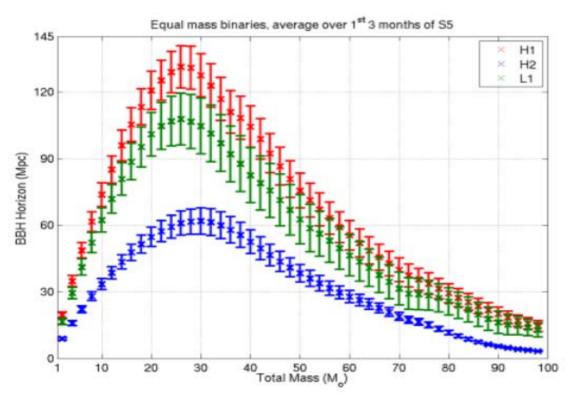
close

·G070250-00-0

LIGO can help?

• Lots of astrophysically relevant data:

Example: Average distance to which 1.4 M₀ NS-NS inspiral range (S/N=8) visible


> QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

LIGO: Sensitivities of detectors

Range depends on mass

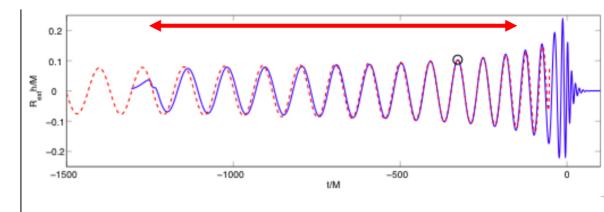
- For 1.4-1.4 M_o binaries, ~ 200 MWEG (# of stars <-> our galaxy) in range
- For 5-5 M_o binaries, ~ 1000 MWEGs in range
- <u>Plot</u>: Inspiral horizon for equal mass binaries vs. total mass

(horizon=range at peak of antenna pattern; ~2.3 x antenna pattern average)

... using only the

- 'inspiral signal' (=understood)
- no merger waves
- no tidal disruption influences

Measuring inspiral sources


Using only 'inspiral' phase [avoid tides, disruption!]

- <u>Mass</u> Must match! df/dt -> mass
- <u>Distance</u>

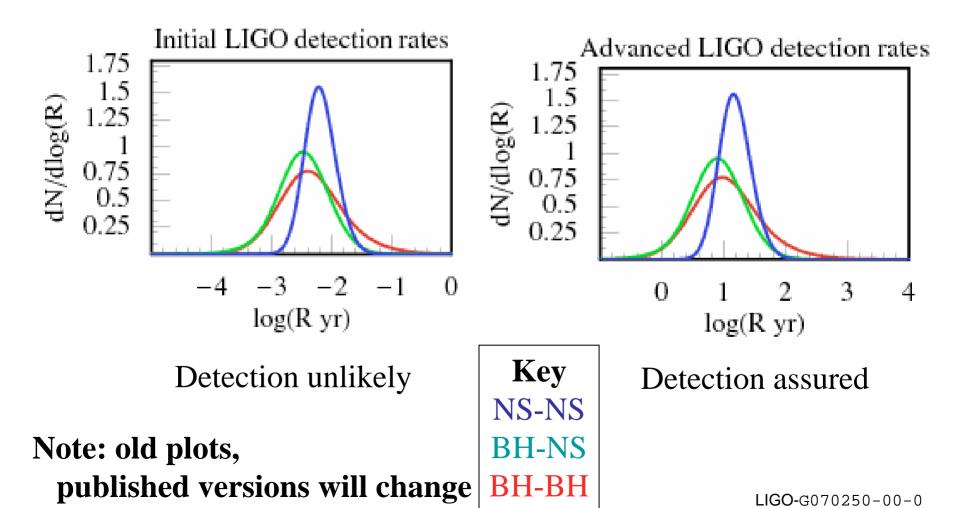
$$SNR \propto \frac{M^{5/6}}{d}$$

- Location on sky
- Orbit orientation
- (Black hole) spin

Precession Only if extreme

Sample uses: short GRBs

sor ure.


- 1) Easily distinguish certain short GRB engines:
- 'High' mass BH-NS merger
- NS-NS merger

2) Host redshifts w/o afterglow d a ressor bicture.

Detection unlikely

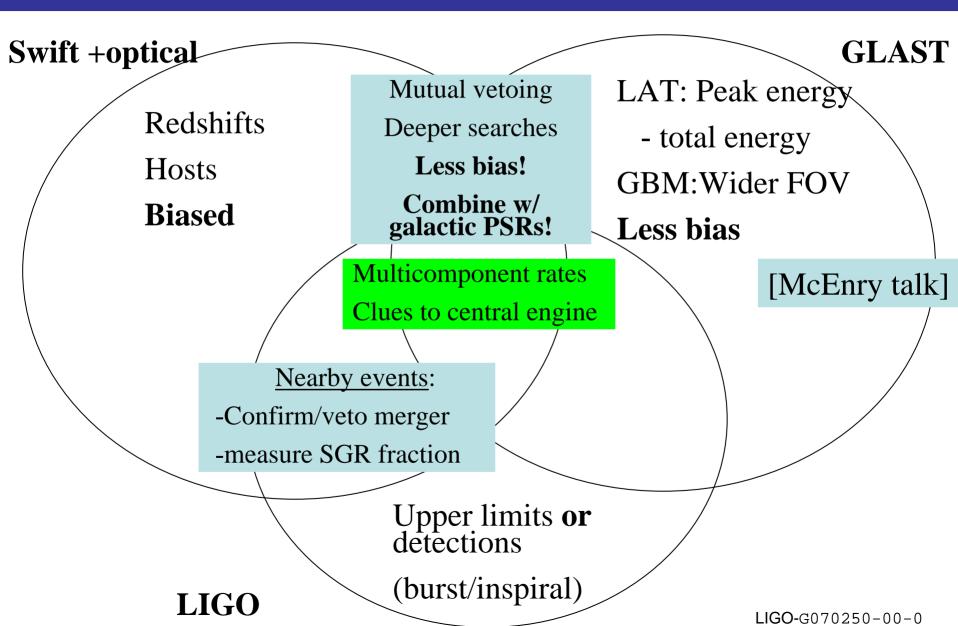
Constrained LIGO detection rates

Assume all galaxies like Milky Way, density 0.01 Mpc⁻³

Nondetection still useful

SGRs are GRBs

- Known galactic/nearby source : SGR 1806
- *Unknown* (small?) contribution to short GRB rate


LIGO can "distinguish":

- Short GRB nearby (e.g., <15 Mpc)
 - Merger : Detectable
 - SGR : Marginally/not detectable

• Application

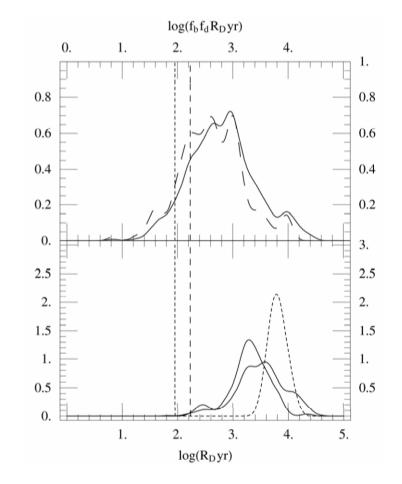
- Assist host galaxy searches (i.e., minimum distance to merger)
- estimate SGR contribution

Key point: Cooperate!

Sample Payoff: Swift vs Theory

Constraints on channels (despite large uncertainties)

- Compare:
 - Theoretical (population synthesis) predictions for merger rates
 with very conservative accounting of uncertainties
 - (I.e., explore lots of model parameters)
 - + (two-component) star formation history of universe
 - Short GRB observations


Sample payoff: Detection rates?

Predicted detection rate vs observed:

- Assume:
 - No bursts fainter than observed!

Point:

- Power law luminosity
 suggests not much
 freedom left for BH-NS (alone)
 ---> many mergers must make
 GRBs and
 - many mergers must be visible *and*
 - not too much beaming

If time permits...

More comparisons

- Pulsars vs theory
- Pulsars+LIGO vs theory : estimate
- Swift short bursts + pulsars vs theory

Otherwise?

Questions?

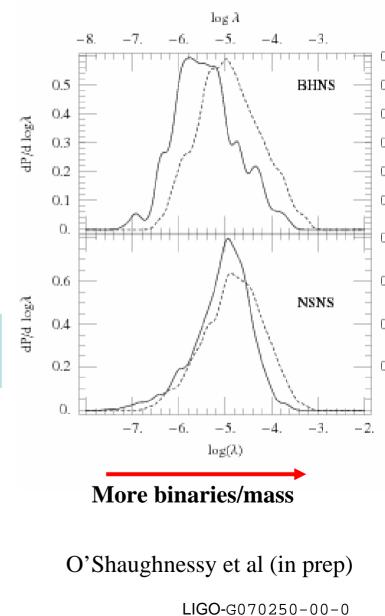
Leaving **immediately** after talk...if further questions, **Email**: <u>oshaughn@northwestern.edu</u> **Chicago** resident -- local visits easy

StarTrack and Population Synthesis

Population synthesis:

- Evolve *representative sample*
- See what happens

Variety of results


Depending on parameters used...

• Range of *number of binaries per input mass*

Plot: Distribution of mass efficiencies seen in simulations

Priors matter

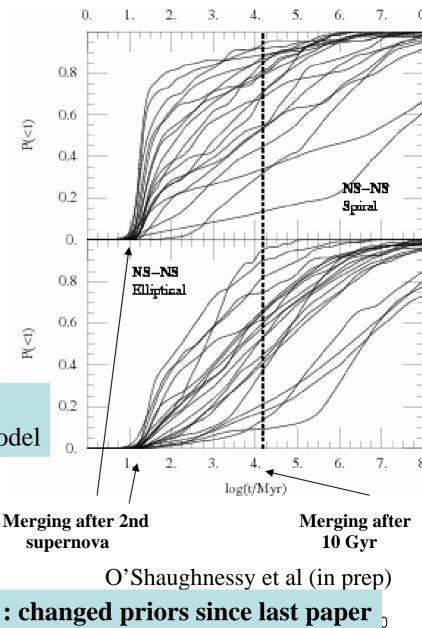
a priori assumptions about what parameters likely influence *expectations*

StarTrack and Population Synthesis

Population synthesis:

- Evolve *representative sample*
- See what happens

Variety of results


Depending on parameters used...

- Range of *number of binaries per input mass*
- Range of *delays between birth and merger*

Plot: Probability that a random binary merges before time 't', for each model

Priors matter

a priori assumptions about what parameters likely influence *expectations*

Outline

- Predictions and Constraints: Milky Way
 - Observations (pulsars in binaries) and selection effects
 - Prior predictions versus observations
 - Constrained parameters
 - Physics behind comparisons : what we learn
 - Revised rate predictions
 - What if a detection?
- Why Ellipticals Matter
- Predictions and Constraints Revisited

Observations of Binary Pulsars

Observations

- 7 NS-NS binaries
- 4 WD-NS binaries

Rate estimate Kim et al ApJ 584 985 (2003)

(steady-state approximation)

Number + 'lifetime visible' + lifetime + fraction missed

=> birthrate

+ error estimate (number-> sampling error)

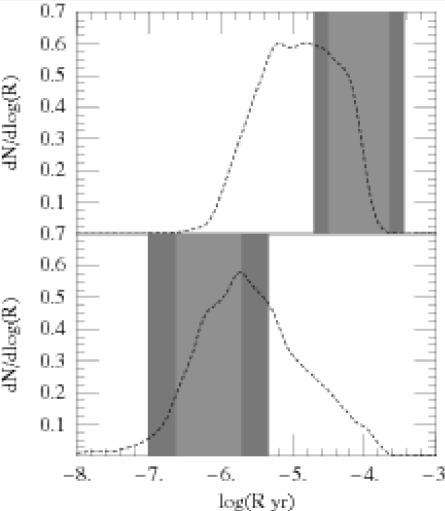
Note:

 Only possible because many single pulsars seen: Lots of knowledge gained on selection effects Applied to *reconstruct* N_{true} from N_{seen}

Kim et al ApJ 584 985 (2003) Kim et al astro-ph/0608280 Kim et al ASPC 328 261 (2005)

Kim et al ApJ 614 137 (2004)

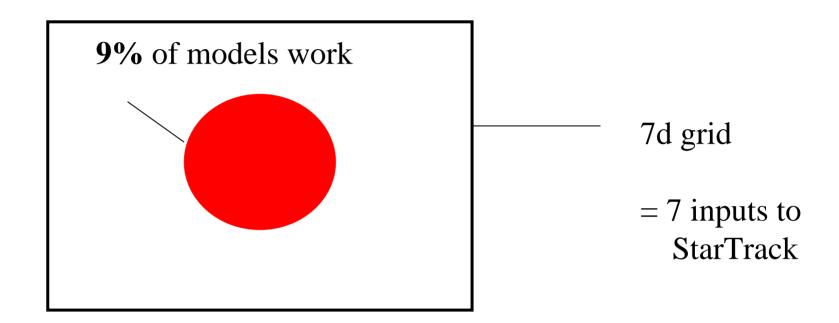
Predictions and Observations


Formation rate distributions

- Observation: shaded
- Theory: dotted curve
- Systematics : dark shaded

Allowed models?

- Not all parameters reproduce observations of
 - NS-NS binaries
 - NS-WD binaries (massive WD)


--> potential constraint

Plot Merging (top), wide (bottom) NS-NS binaries

Accepted models

Constraint-satisfying volume

7d volume:

- Hard to visualize!
- Extends over 'large' range: <u>characteristic extent</u>(each parameter): 0.09^{1/7}~0.71

Detection: A scenario for 2014

Scenario: (Advanced LIGO)

Observe n ~ 30 BH-NS events
 Ireasonable1

Potential

- •Stringent test of binary
 - evolution model already!
- •Stronger if
 - •Orbit distribution consistency
 - •More constraints

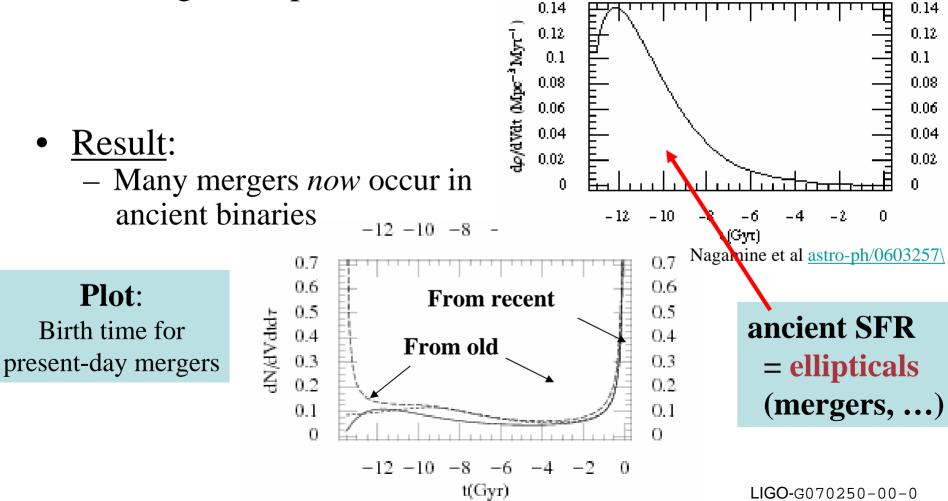
	UIL UITAIIIUS (UAUI UUPUIUS UIT	
	Chief	forentily on model paramo, >
Volume	$[0.09 \ (0.08)^3] \sim (4 \text{ x } 10^{-5}) !!$	
Params	$[0.09 \ (0.08)^3]^{1/7} \sim 0.24$	

Outline

- Predictions and Constraints: Milky Way
- Why Ellipticals Matter
 - Two-component star formation model
- Predictions and Constraints Revisited
 - Prior predictions
 - Reproducing Milky Way constraints

Importance of early SFR

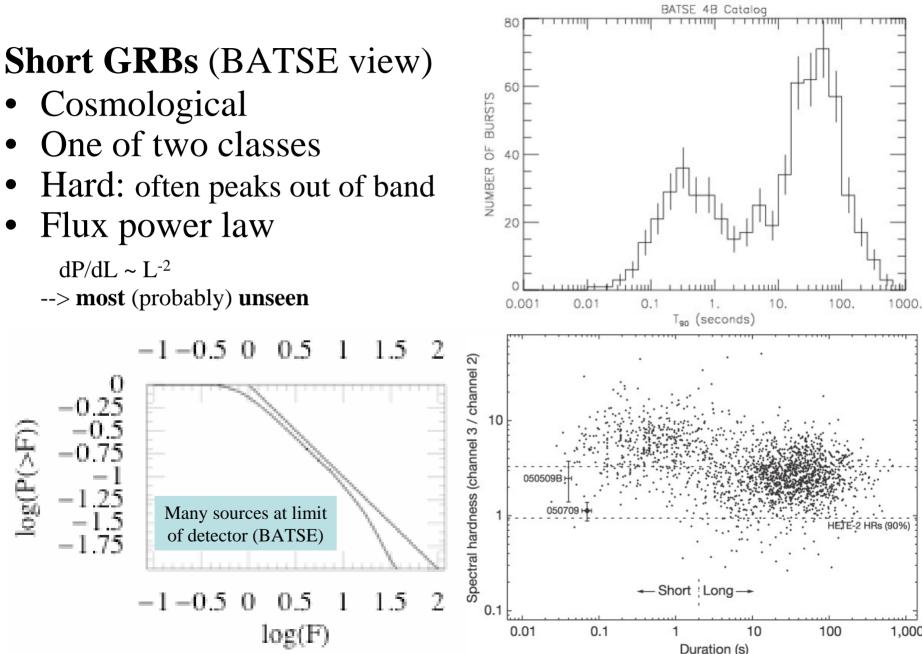
Long delays allow mergers in ellipticals now


- Merger rate from starburst:
- SFR higher in past:

 $R \sim dN/dt \sim 1/t$

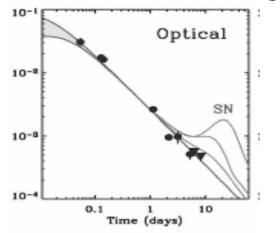
- 10

Ū


- 12

Outline

- Predictions and Constraints: Milky Way
- Why Ellipticals Matter
- Predictions and Constraints Revisited
- GRBs
 - Review + the short GRB merger model
 - Short GRB observations, the long-delay mystery, and selection effects
 - Detection rates versus L_{min}
 - Predictions versus observations:
 - If short GRB = BH-NS
 - If short GRB = NS-NS
 - Gravitational waves?
- Conclusions


Short GRBs: A Review

Short GRBs: A Review

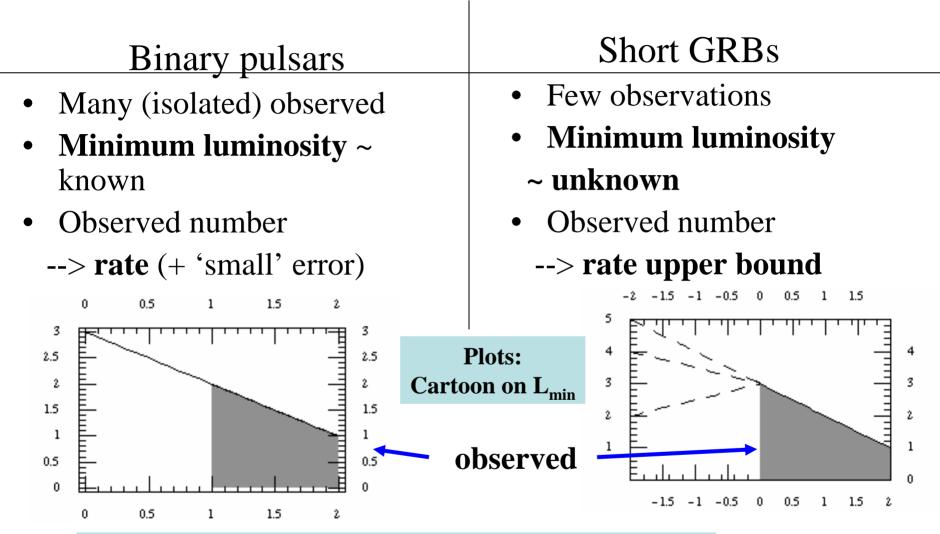
Merger motivation?

• No SN structure in afterglow

GRB 051221 (Soderberg et al 2006)

• In both old, young galaxies

Selected short GRBs					
GRB	Host	L/L_*	SFR		
			<i>M</i> ⊙/yr		
050509b	E	3	< 0.1		
050709b	Sb/Sc	0.1	0.2		
050724	E	1.5	< 0.03		
051221	S	0.3	1.4		
060502	E	1.6	0.6		
(Nakar, 2006 : Table 3)					


•Occasional host offsets

GRB 050709 (Fox et al Nature 437 845)

• Energetics prohibit magnetar

Observables: Detection rate?

Conclusion:

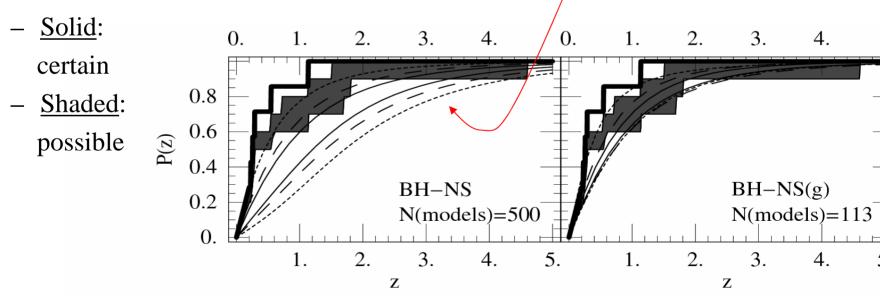
The number (rate) of short GRB observations is a <u>weak</u> constraint on models

LIGO-G070250-00-0

Observables: Redshift distribution

Redshift distribution desirable

- Low bias from luminosity distribution
- Well-defined statistical comparisons Kolmogorov-Smirnov test (=use maximum difference)


Observed redshift sample

• Need sample with *consistent selection effects* (=bursts from 2005-2006, with Swift)

Problem: Possible/likely bias towards low redshifts

<u>BH-NS?</u>:

- Predictions:
 - 500 pairs of simulations
 - Range of redshift distributions
- Observations:

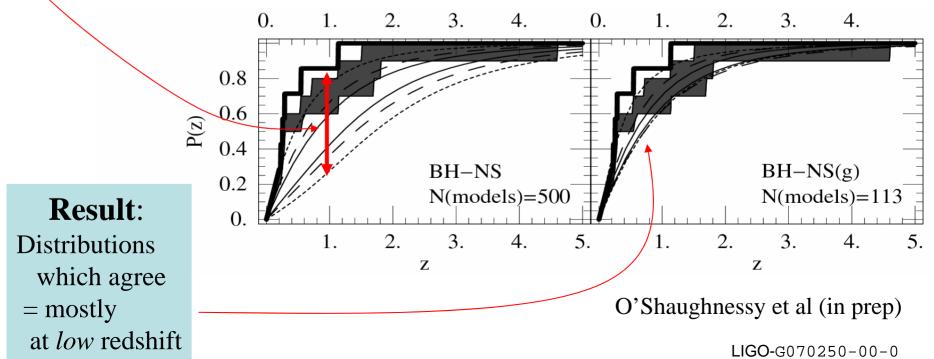
O'Shaughnessy et al (in prep)

Key

Solid: 25-75%

Dashed: 10-90%

Dotted: 1%-99%

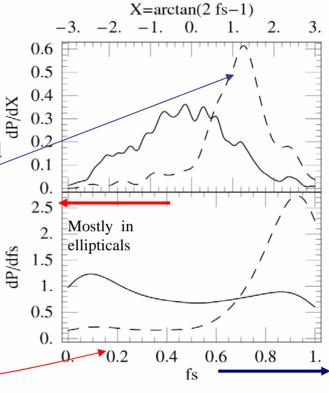

LIGO-G070250-00-0

<u>BH-NS?</u>:

- Predictions that agree?
 - Compare *cumulative distributions*:
 - maximum difference < 0.48 everywhere

[95% Komogorov-Smirnov given GRBs]

- Compare to well-known GRB redshifts since 2005 [consistent selection effects]
 - dominated by low redshift


<u>BH-NS?</u>:

- Physical interpretation
 - Observations : Dominated by recent events
 - Expect:
 - Most mergers occur in spirals (=*recent* SFR) and High rate (per unit mass) forming in spirals
 - or Most mergers occur in ellipticals (=old SFR) and High rate (per unit mass) forming in elliptical and Extremely prolonged delay between formation and merger (RARE)

Plot: f_s : fraction of mergers in spirals (z=0)

• Consistent...but...

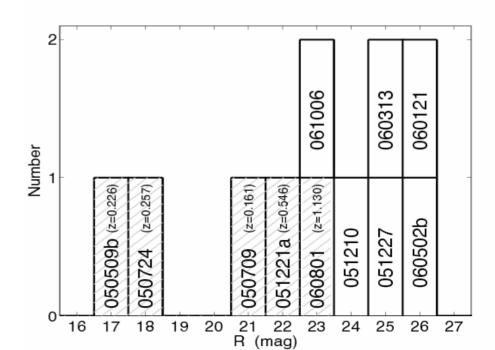
Short GRBs appear in ellipticals! BH-NS hard to reconcile with GRBs??

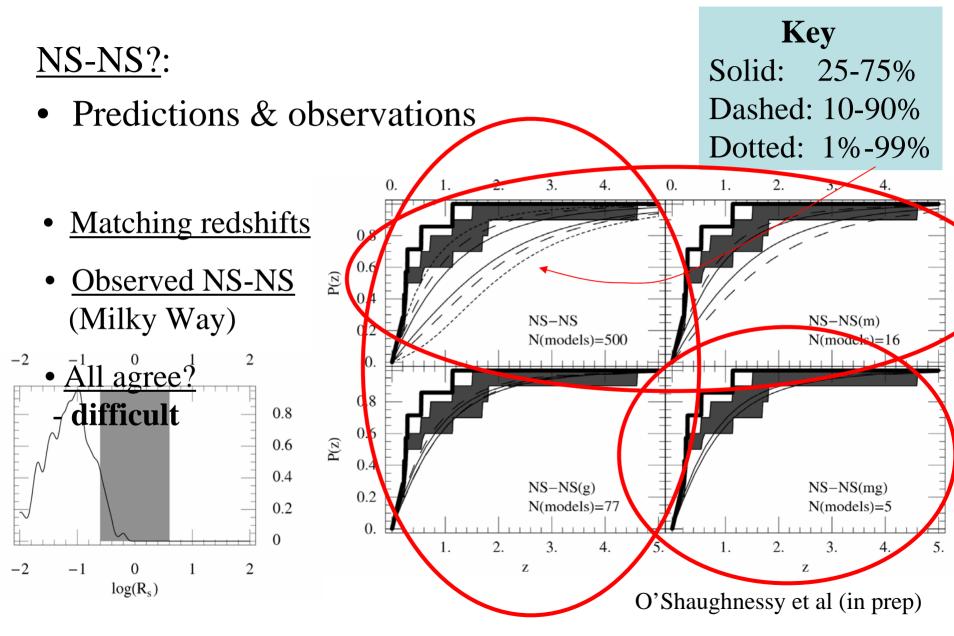
Mostly in spirals

O'Shaughnessy et al (in prep)

LIGO-G070250-00-0

<u>BH-NS?</u>:


- Conclusion = confusion
 - Theory + redshifts : Bias towards recent times, spiral galaxies
 - Hosts: Bias towards **elliptical** galaxies
- What if observations are *biased* to low redshift?
 - strong indications from deep afterglow searches


[Berger et al, astro-ph/0611128]

15

Makes fitting easier
 Elliptical-dominant solutions
 ok then (=agree w/ hosts)

Point: Too early to say waiting for data; more analysis needed

LIGO-G070250-00-0

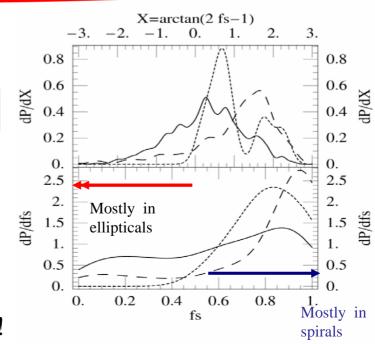
<u>NS-NS?</u>:

– Expect:

- Physical interpretation
 - Observations : GRBs
 - Dominated by **recent** events

-Observations: Galactic NS-NS

• High merger rate


-Expect -High merger rate in spirals

- Recent spirals dominate or
- or Ellipticals dominate, with long delays

Plot: f_s : fraction of mergers in spirals (z=0)

• Consistent...but...

Short GRBs appear in ellipticals! NS-NS hard to reconcile with GRBs and problem *worse* if redshifts are biased low!

Conclusions

Present:

- Useful comparison method **despite** large uncertainties
- Preliminary results
 - Via comparing to pulsar binaries in Milky V
 - Low mass transfer efficiencies forbidden
 - Supernovae kicks ~ pulsar proper motions
 - BH-NS rate closely tied to min NS mass/CE
 - Via comparing to short GRBs?
 - Conventional popsyn works
 - Expect GRBs in **either host**
 - Spirals now favored; may change with new -formation history
 - Short GRBs = NS-NS? hard
 - Short GRBs = BH-NS? easier
- Observational recommendations
 - Galactic :
 - Minimum pulsar luminosity & updated selection
 - Pulsar opening angles
 - Model : Size and SFR history
 - Short GRBs :
 - $\mathbf{D}_{-}\mathbf{A}^{\bullet}$

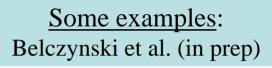
(Long term) Wishes (critical)

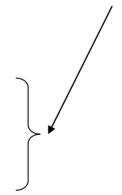
-reliable GRB classification -short burst selection bias? -deep afterglow searches

: weak const : spirals form (less critical)

: few co -formation properties : fewer

(Z, imf) [mean+statistics] for **all** star-forming structures


Conclusions


Future (model) directions:

- More comparisons
 - Milky Way
 - Pulsar masses
 - Binary **parameters** (orbits!)
 - Supernova kick consistency?
 - Extragalactic
 - Supernova rates
- Broader model space
 - –Polar kicks?
 - -Different maximum NS mass
 - [important: BH-NS merger rate sensitive to it!]
 - -Different accretion physics

Goal:

- show predictions *robust* to physics changes
- if changes matter, understand why (and devise tests to constrain physics)

