Short GRBs and Mergers: Astrophysical constraints on a BH-NS and NS-NS origin

Richard O'Shaughnessy [V. Kalogera, C. Kim, K. Belczynski, T. Fragos] APS, April 16, 2007

Outline

- Short GRBs : A Review – Intersection with LIGO
- Population synthesis predictions
 - Milky Way

astro-ph/0610076; 0609465

- Universe
- Could short GRBs be mergers?
 - Detection rates consistent?
 - Redshift distribution, hosts?

Short GRBs: A Review

Short GRBs

- One of two (?) classes
- Cosmological distances
 Low redshift selection effect?
- Hard: often peaks out of band
- Flux power law

```
dP/dL \sim L^{-2}
```

-0.25 -0.5 -0.75

-1.5

-1.75

log(P(>F))

--> most (probably) unseen

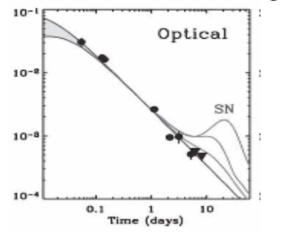
-1 - 0.5 0

-1 - 0.5 0

0.5

log(F)

Many sources at limit

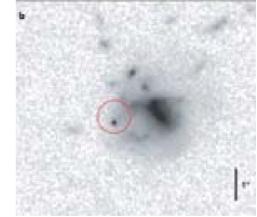

of detector (BATSE)

BATSE 4B Catalog TTTTT 60 **3URSTS** 5 40 NUMBER 20 0.001 0.1 1000 0.01 10. 100. 1. T₉₀ (seconds) 2 [Berger et al, astro-ph/0611128] 001006 060313 060121 Number 1 (z=0.546) (z=1.130) 050509b (z=0.226) z=0.161 (z=0.257 060502b 051210 051227 051221a 060801 050724 050709 22 17 18 21 23 25 20 24 26 27 16 19 R (mag)

Short GRBs: A Review

Merger motivation?

• No SN structure in afterglow

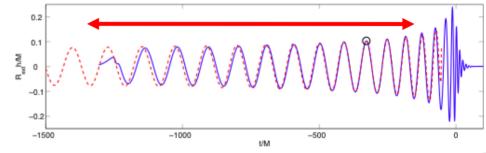


GRB 051221 (Soderberg et al 2006)

• In both old, young galaxies

Selected short GRBs			
GRB	Host	L/L_*	SFR
			M _☉ /yr
050509b	E	3	< 0.1
050709b	Sb/Sc	0.1	0.2
050724	E	1.5	< 0.03
051221	S	0.3	1.4
060502	E	1.6	0.6
(Nakar, 2006 : Table 3)			

•Occasional host offsets



GRB 050709 (Fox et al Nature 437 845)

• Young NSs are *some* (known) Energetics suggest not all

Short GRBs: Review

- Gravitational waves essential
 - Central engine? : Certainty requires gravitational waves
 - See inspiral
 - Check masses

Coincident observation powerful

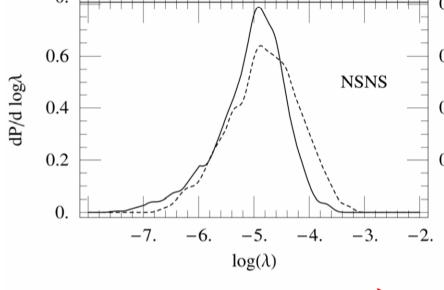
[e.g., merger-burst delay time; opening angle constraints; masses; NS radius; ...]

Nondetection still useful

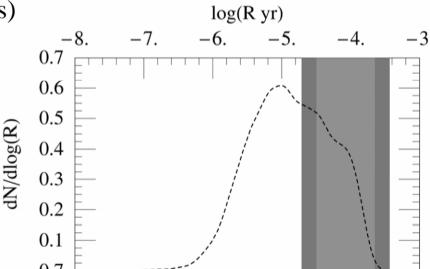
[e.g., find fraction of short bursts from NS alone nearby]

- Short GRBs : potentially powerful tool?
 - Constrain channels: Short GRBs >> 10/yr; #(NS-NS)=4

Popsyn and Milky Way


Population synthesis

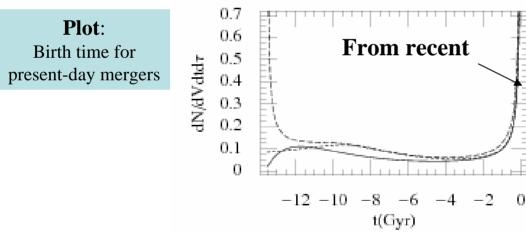
Controlled uncertainties
 --> wide but *limited* range of predictions


Milky Way: A test

- ~ steady state system (average merger rate)
- Compare to observations (several Kim et al) (NS-NS binaries + **known** selection effects)
 - Observation: shaded
 - Theory: dotted curve
 - Systematics : dark shaded
- Limited set (9%) consistent
 - Complicated, extended 7d volume
 - Lots of physics can be mined

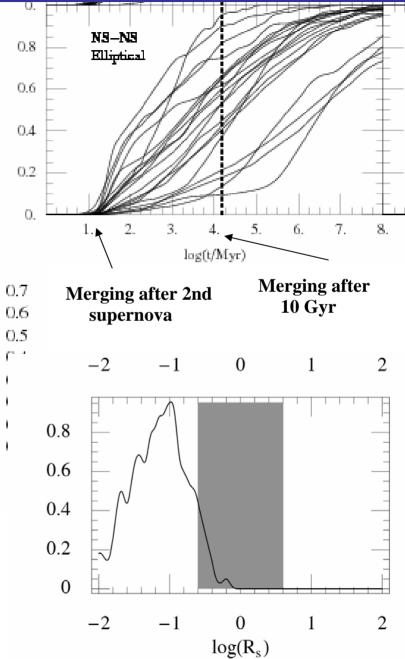
astro-ph/0610076

More binaries/mass

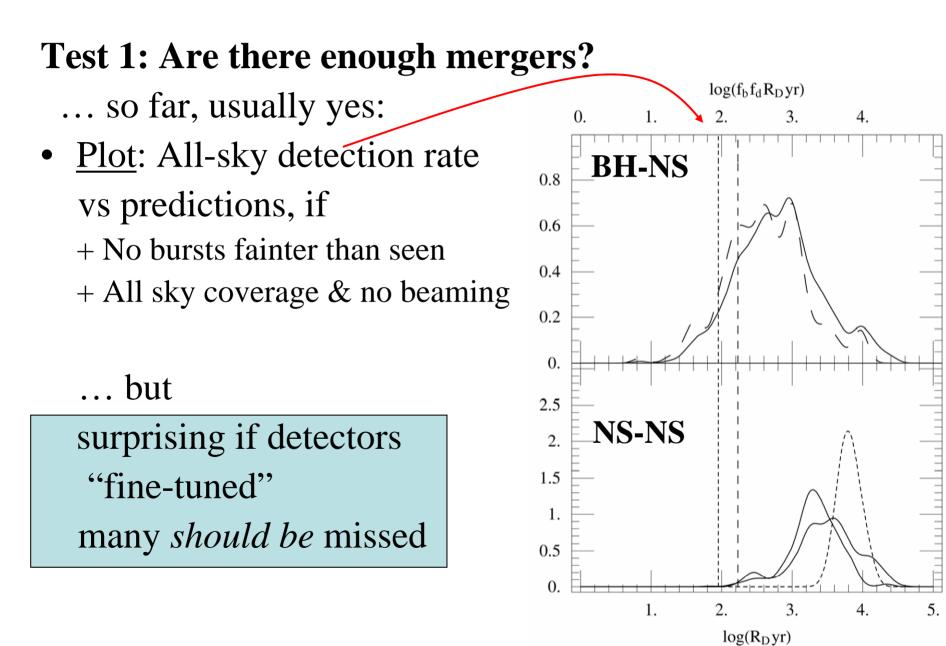

Popsyn and Universe

-12 - 10 - 8 - 6 - 4 - 2

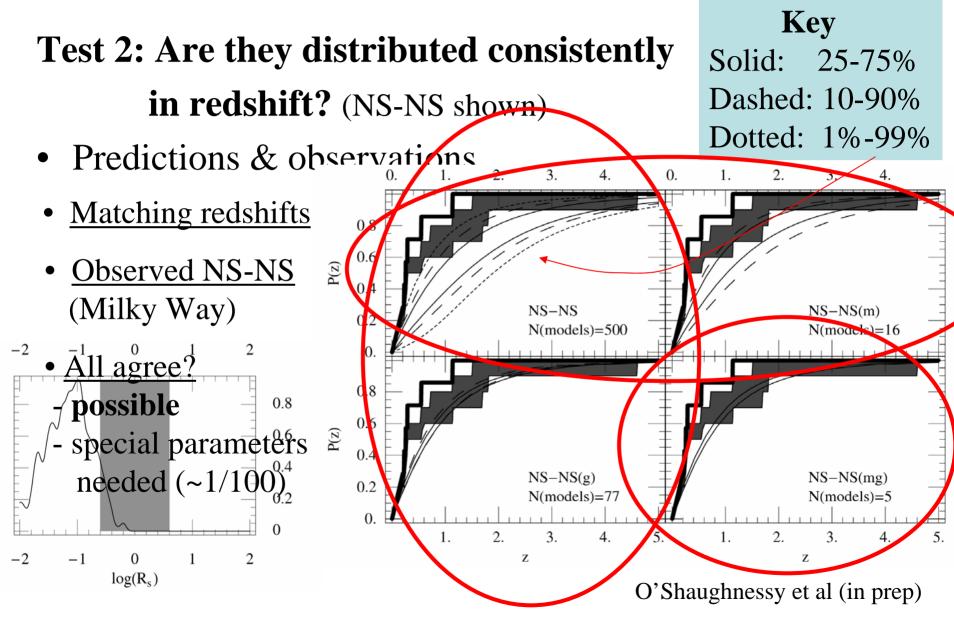
 $\widehat{\mathbb{V}}_{\mathcal{X}}^{(i)}$



- Time-dependent, multicomponent
 SFR
- Use delay time distribution
 (dP/dt ~ 1/t)
- Long delays matter



Sample multicomponent predictions:


• Merger rate in spirals (NS-NS)

Can short GRBs be mergers?

Can short GRBs be mergers?

LIGO-G070249-00-0

Can short GRBs be mergers?

<u>NS-NS?</u>:

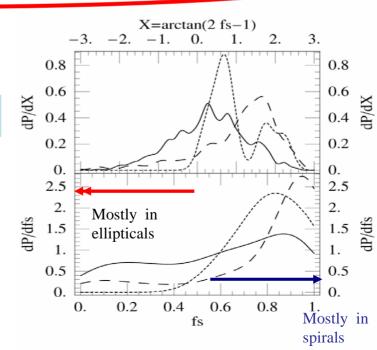
– Expect:

- Physical interpretation
 - Observations : GRBs
 - Dominated by **recent** events

-Observations: Galactic NS-NS

• High merger rate

-Expect


-High merger rate in spirals

• or Ellipticals dominate, with long delays

• Recent spirals dominate or

Plot: f_s : fraction of mergers in spirals (z=0)

• Consistent so far

Conclusions

- Useful comparison method **despite** large uncertainties
- Preliminary results
 - Via comparing to pulsar binaries in Milky Way
 - Via comparing to short GRBs?
 - Conventional popsyn **works** :
 - : weak constraints-> standard model ok
 - Expect GRBs in **either host** : spirals form stars now
 - Spirals now favored; may change with new redshifts!
 - Short GRBs = NS-NS? hard
- : few consistent ellipticals
- Short GRBs = BH-NS? easier : fewer observations
- Observational recommendations

Supporting slides follow

- LIGO and short GRBs : Nondetection still useful
- Swift detection biases

Nondetection still useful

SGRs are GRBs

- Known galactic/nearby source : SGR 1806
- *Unknown* (small?) contribution to short GRB rate

LIGO can "distinguish":

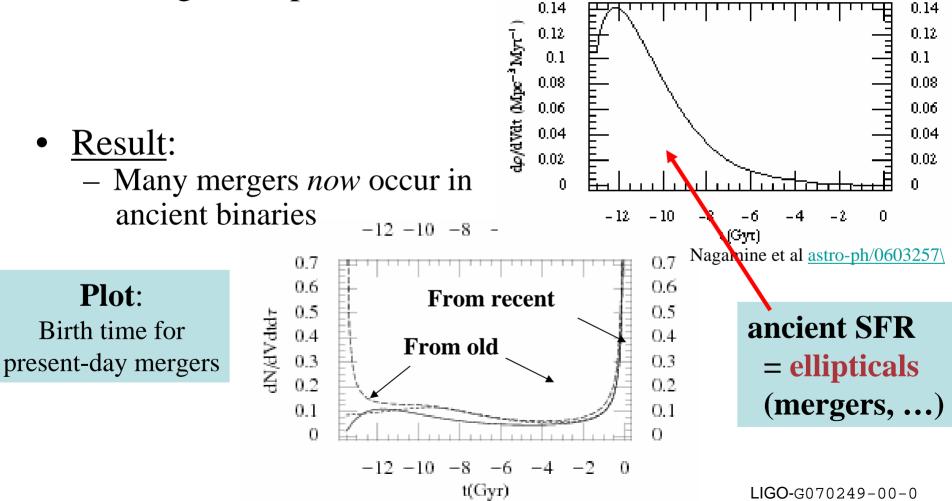
- Short GRB nearby (e.g., <15 Mpc)
 - Merger : Detectable
 - SGR : Marginally/not detectable

• Application

- Assist host galaxy searches (i.e., minimum distance to merger)
- estimate SGR contribution

Importance of early SFR

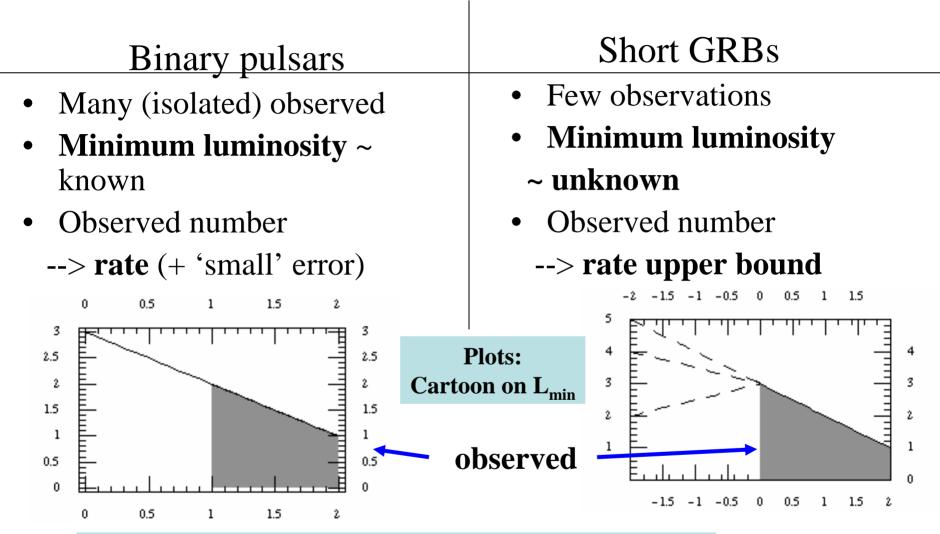
Long delays allow mergers in ellipticals now


- Merger rate from starburst:
- SFR higher in past:

 $R \sim dN/dt \sim 1/t$

- 10

Ū

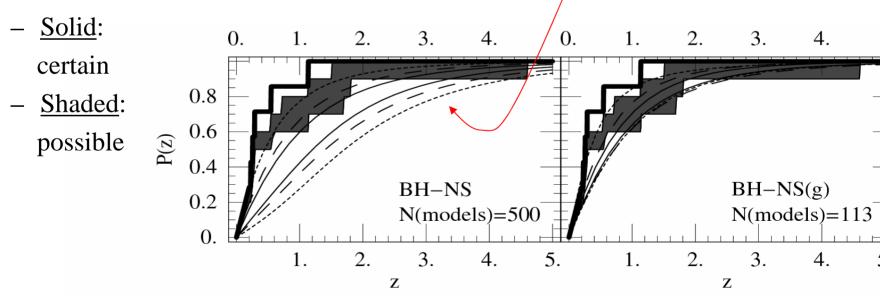

- 12

Outline

- Predictions and Constraints: Milky Way
- Why Ellipticals Matter
- Predictions and Constraints Revisited
- GRBs
 - Review + the short GRB merger model
 - Short GRB observations, the long-delay mystery, and selection effects
 - Detection rates versus L_{min}
 - Predictions versus observations:
 - If short GRB = BH-NS
 - If short GRB = NS-NS
 - Gravitational waves?
- Conclusions

Observables: Detection rate?

Conclusion:


The number (rate) of short GRB observations is a <u>weak</u> constraint on models

LIGO-G070249-00-0

Merger predictions <-> short GRBs?

<u>BH-NS?</u>:

- Predictions:
 - 500 pairs of simulations
 - Range of redshift distributions
- Observations:

O'Shaughnessy et al (in prep)

Key

Solid: 25-75%

Dashed: 10-90%

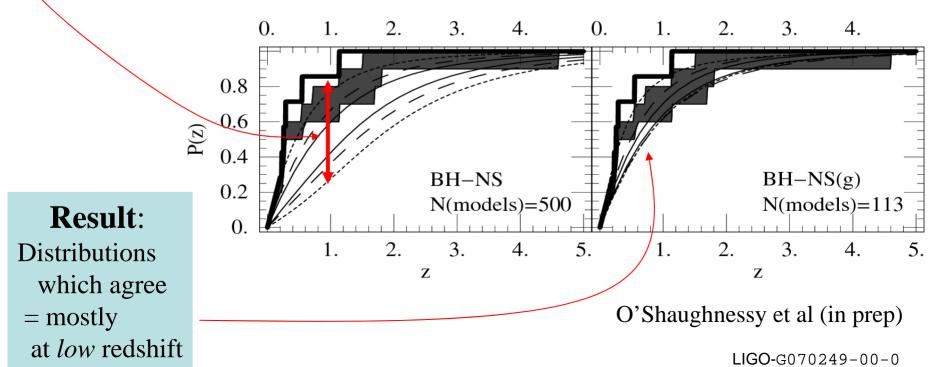
Dotted: 1%-99%

LIGO-G070249-00-0

Merger predictions <-> short GRBs?

<u>BH-NS?</u>:

- Predictions that agree?
 - Compare *cumulative distributions*:

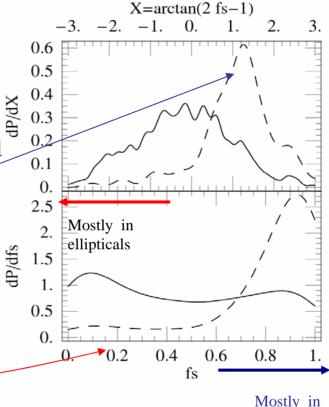

dominated by low redshift

maximum difference < 0.48 everywhere

[95% Komogorov-Smirnov given GRBs]

- Compare to well-known GRB redshifts since 2005

[consistent selection effects]



Merger predictions <-> short GRBs?

<u>BH-NS?</u>:

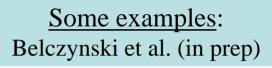
- Physical interpretation
 - Observations : Dominated by recent events
 - Expect:
 - Most mergers occur in spirals (=*recent* SFR) and High rate (per unit mass) forming in spirals
 - or Most mergers occur in ellipticals (=old SFR) and High rate (per unit mass) forming in elliptical and Extremely prolonged delay between formation and merger (RARE)

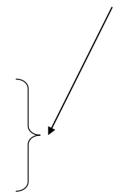
Plot: f_s : fraction of mergers in spirals (z=0)

spirals

O'Shaughnessy et al (in prep)

LIGO-G070249-00-0


Conclusions


Future (model) directions:

- More comparisons
 - Milky Way
 - Pulsar masses
 - Binary **parameters** (orbits!)
 - Supernova kick consistency?
 - Extragalactic
 - Supernova rates
- Broader model space
 - –Polar kicks?
 - -Different maximum NS mass
 - [important: BH-NS merger rate sensitive to it!]
 - -Different accretion physics

Goal:

- show predictions *robust* to physics changes
- if changes matter, understand why (and devise tests to constrain physics)

