

Noise Transients and Veto Studies for Gravitational Wave Bursts in LIGO

Shantanu Desai (Penn State University) For

LIGO Scientific Collaboration

Talk Outline

- Introduction to LIGO data and burst searches.
- Overview of tools used for studies of noise transients.
- Strategy used to veto events due to noise transients from burst searches.
- Some examples of detector malfunctions which masquerade as false "gravitational wave events".
- Conclusions.

List of Acronyms used in this talk:

- > H1 4 km Hanford interferometer
- > H2 2 km Hanford interferometer
- ➤ L1 4 km Livingston interferometer
- > S5 Fifth LIGO science run starting in Nov. 2005

Rudiments of LIGO Data

 Data containing possible signal of a gravitational wave is digitized and sampled at 16 KHz and saved in a data acquisition unit ("channel") called gravitational wave channel

 Data from auxiliary control channels and various environmental monitors (eg. seismometers, magnetometers) also stored in similar channels for various diagnostic purposes.

Basics of Burst Searches

 Various algorithms (time-domain, wavelets) are used to look for transients in the gravitational wave channel after whitening the data.
 Start and stop time of the transient is called a trigger

• Some of these algorithms are also applied to find transients in auxiliary interferometric or environmental channels.

LIGO Detector Characterization Tools

Online Data Monitoring Tools (available in real time)

- Offline Studies (few hours to 1 day latency)
 - Single-detector outliers found by burst and inspiral searches
 - Double and triple coincidence triggers (higher threshold)
 - Explore autocorrelation of transients
 - > Study potential vetoes for astrophysical searches
- Event Visualization Tools

Autocorrelogram of H1 triggers

(obtained from one of the burst search algorithms: Kleine-welle)

Peaks at 3 sec. due to elevated microseismic noise (0.1 - 0.3 Hz)

GO Stra

Strategy for Veto Identification

- Generate Data quality flags for bad intervals with different severity levels.
 - Category 1 Do not analyze
 - Category 2 Used in post-processing
 - ➤ Category 3 Advisory for detection confidence and used in upper limit, if no detection
 - ➤ Category 4 Advisory flag used to exert caution in case of a detection candidate
- Use vetoes from auxiliary channel on an event-by-event basis.

Tuning done on single interferometer triggers.

Veto Yield ~ 10 % for interferometric channels and 1 % for environment channels Dead-times ~ 0.5 %

Check a real gravitational wave would not couple to veto channels.

Example: Calibration malfunction

LIGO Example:Power line fluctuations

• Disturbances on power mains : These cause simultaneous coherent noise transients in H1 and H2.

LIGO Example: Seismic Noise

Transient seismic noise < 10Hz getting up-converted into LIGO band

Hanford Y-end seismometer

Category-3 Data quality flag Dead-Time ~ 0.6 %

Excess Seismic noise

Periodic L1 transient events

- Hourly noise transients first appeared on October 3rd 2006.
- Attributed to snapshot processes performed by the detector DAQ on a periodic basis (every hour in Oct. 2006). This has been addressed now.
- Use and classification as a Data quality flag under study.

Conclusions

12

- During the S5 run, the LSC made significant progress in the identification of bad data and eliminate transient noise events with various offline/online monitors and event-visualization tools.
- Several data quality flags with different levels of severity have been identified.
- Prompt feedback of analysis findings is provided to detector commissioners.
- More work still in progress to track down unknown transient noise events

Aim is to bring lot of this effort to real-time in the future so as to support online astrophysical searches.