
Core Optics Components (COC)

Polishing Pathfinder Kickoff Advanced LIGO Project

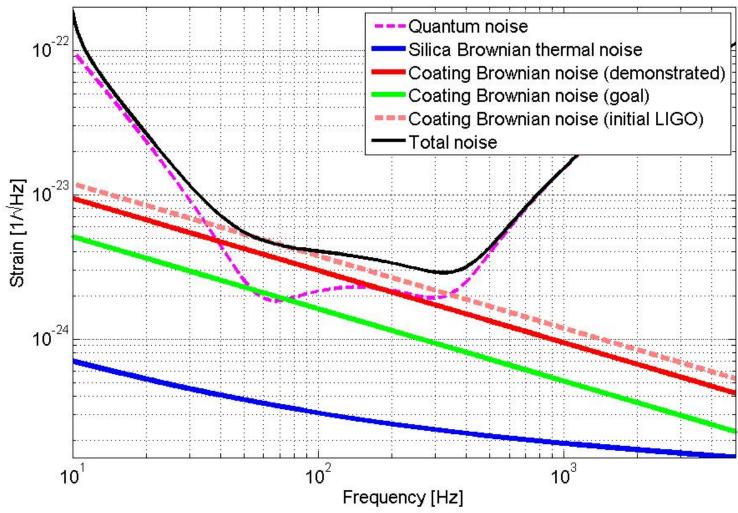
GariLynn Billingsley
Caltech

COC Description & Deliverables

- Fabricate, characterize and deliver core optics and spares
- Provide for cleaning, handling, shipping and storage containers
- Complete when all optics and spares are characterized and delivered

Core Optics Test Mass Requirements

Mass	40 Kg				
Dimensions	340 mm x 200mm				
Surface figure	< 1 nm rms				
Micro-roughness	< 0.1 nm rms				
Optical homogeneity	< 20 nm rms, double pass				
Bulk absorption	< 3 ppm/cm				
Bulk mechanical loss	< 3×10 ⁻⁹				
Optical coating absorption	< 0.5 ppm (required) < 0.2 ppm (goal)				
Optical coating scatter	< 2 ppm (required) < 1 ppm (goal)				
Optical coating mechanical loss	< 2×10 ⁻⁴ (required) < 3×10 ⁻⁵ (goal)				
Arm cavity optical loss / round trip	< 70 ppm				


advancedligo Arm cavity loss budget 70ppm/ round trip

	Budget (ppm)	Note
Diffraction Mirror aperture	2 * 1	Will go up to ∼10 with heating
Roughness scatter Based on Microroughness theoretical loss at 0.16 nm rms	2 * 3.5	
Defect scatter Scratches and point defects. Requirement < 20k μm² over 120 mm dia	2 * 3.7ppm	L1 average 17k μm² over 235 mm dia
Coating scatter	2 * 3	Currently 2 * 30?
Figure Based on stretching and scaling our best LIGO 1 data.	2 * 20	See next slide
Absorption	2 * 0.5	typical
ETM Transmission	7	
Total	70.4	

Core Optics Baseline Design

Figure – Radius of curvature

ROC requirements Surface 1:

- » Astigmatism measured separately (clocked at CIT)
- » ROC absolute ~ within 30 meters, based on diffraction loss
- » ROC relative, model suggests ±2 m.....!
- » Thermal compensation will impact this in an unknown way.
 - Perhaps greater tolerance, probably a different "cold" ROC
- » For Fabrication ROC measurement aperture will be 160mm

Requirements for Surface 2:

- » Make the bulk look ideal
- "transmitted" measurement should be S1 ± 15m
- » We are looking for power correction only
 - We don't anticipate higher order error in the 311 glass, based on LIGO 1 beamsplitter measurements (L1 ITMs were 312 material)
 - Heraeus measured homogeneity of ~6nm PV before final trim

Heraeus certification of ingot 700887000 LIGO-E060006-00

	Specification value	Measured value	Comment		
Diameter (mm)	344,0 (+/- 1,0)	344,0 (+/- 1,0)			
Thickness (mm)	204,0 (+/- 1,0)	204,0 (+/- 1,0)			
CA (mm)	Ø 275	Ø 275			
Homogeneity over every Diameter (ppm)	Ø 200 mm ≤ 2,5 x 10*-6 Ø 80 mm ≤ 0,5 x 10*-6	≤ 0,08 x 10*-6 ≤ 0,03 x 10*-6	Inspection thickness 204,5 mm		
Residual Birefringence (nm/cm over CA)	Ø 200 mm ≤ 5 Ø 80 mm ≤ 1	≤ 0,527 nm/cm ≤ 0,232 nm/cm	Acc. to ISO 10110		
Striae:	Grade 2	no striae detected	MIL-G- 174		
Bubble and Inclusion (over CA)	≤ 0,03 mm ² / 100cm ³ Inclusions with a diameter of 0.06 mm or less are disregarded. Maximum inclusion diameter: ≤ 0.1 mm	no bubbles detected no inclusions detected			
OH – content (ppm)	≤ 250	Average 197 ppm			

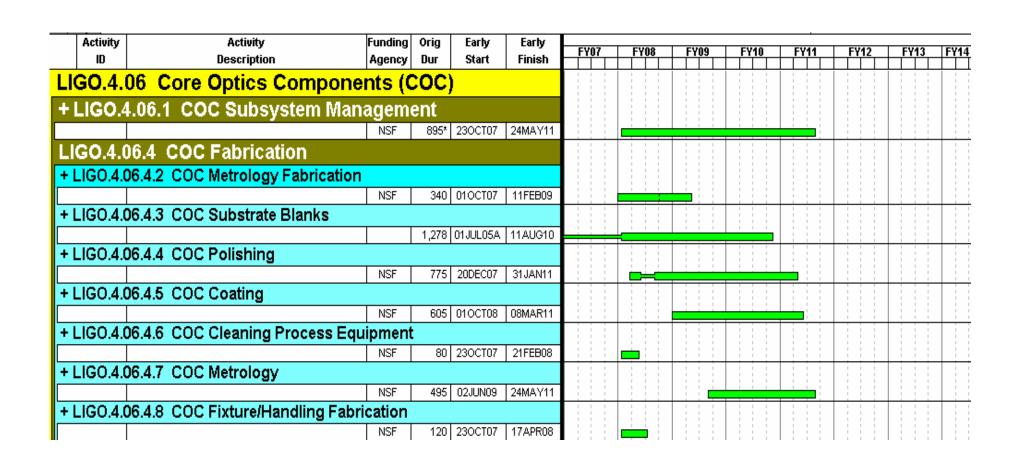
Figure – Surface error low frequency to 1/mm

Side 1 RMS with TPA removed

- » 0.7 nm over 150 mm diameter (will be 160 for Adv. LIGO)
 - modeling noise in the zone outside: 3x noise of random map ~15% or 3ppm increase in loss
 - Random map of 0.5nm rms typically gives rise to ~18ppm loss.
 - Roughly 10 ppm loss (1/2 of budget) in the frequency range 0.1/mm to 1/mm
- » 2.1 nm over 300 mm diameter
 - Per T060223, sharp errors of order 20 nm at a position of 3 cm in from the edge have an effect on cavity loss of order
 1ppm
- Experience from LIGO 1
 - » Rms over small areas(1 cm) is consistent across the optic
 - » Similarity in CIT measurements indicate we generally do not measure the actual optics.

Microroughness 1/mm to 750/mm

- Outside the normal range of "microroughness" measurements
- The frequency spectrum may be covered by multiple instruments



Advanced LIGO project

- Funding should be available for placing contracts ~Jan '08
 - » Advanced LIGO is in the President's budget
 - » President's budget is yet to be approved by Congress
- Anticipate providing the blanks already shaped
 - » Wedges
 - » Mounting flats
 - » Bevels
 - » All surfaces polished?
- Due to schedule constraints, anticipate letting two polishing subcontracts.
 - » Logical division of optic type is yet TBD and depends on vendor capabilities

Core Optics Schedule Highlights

Core Optics Spares

	PRM	SRM	BS	FM	СР	1st 2 ifo ITM	3rd ifo ITM (wedge)	ETM
Optic size (mm)	265 x 100	265 x 100	370 x 64	370 x 64	340 x 130	340 x 200	340 x 200	340 x 200
Required 1st IFO	1	1	1	0	2	2	0	2
Spares 1st IFO	2	2	2	0	2	4	0	4
Required 2nd IFO	1	1	1	0	2	2	0	2
Spares 2nd IFO	1	1	1	0	1	0	0	0
Required 3rd IFO	1	1	1	2	2	0	2	2
Spares 3rd IFO	1	1	0	1	0	0	2	0
Total Number 54 (25 of which are spare)	7 (4)	7 (4)	6 (3)	3 (1)	9 (3)	8 (4)	4 (2)	10 (4)