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Overview

• What are gravitational waves?
• Detecting gravitational waves.
• Astrophysical sources of and 

searches for gravitational waves.
• The future of gravitational wave 

astronomy.
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Fundamental 
Forces
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Gravity
• Sir Isaac Newton published a 

theory of gravity in 1686 
(Principia Mathematica).

• Massive objects exert a force on 
other massive objects.

• Force acted instantaneously.

F =
GmEarthmapple

d2 .
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Gravity

• Einstein’s General 
Theory of Relativity 
(1915) – called GR

• Gravity is product of 
curvature/geometry of 
space-time, caused by 
mass and energy.
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Gravity
• Equations of GR show 

gravity does not act 
instantaneously.

• Gravity propagates from 
its source at a finite 
speed, just like 
electromagnetic waves 
(e.g. light waves), sound 
waves or ripples on a 
pond.
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Gravitational waves
• Gravitational waves (GW) are 

ripples in space-time and are a 
direct prediction of GR.

• Accelerating masses (time 
varying mass quadrupoles) 
produce changing curvature that 
cause these ripples.

• Ripples propagate away from the 
source at the speed of light 
generally unaffected by matter.
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Gravitational waves
• GWs stretch and squeeze space 

(push and pull freely falling objects 
apart) as they propagate through it
– transverse to the direction of 

propagation
– equal and opposite in orthogonal 

directions (traceless)
• Two polarisations called 'plus' + 

and 'cross' x rotated at 45o to each 
other
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Gravitational waves
• Gravity is a very weak force 

(only very large masses 
produce noticeable forces, 
e.g. the Earth and the Sun).

• Space-time is very stiff
• GWs only cause very small 

distortions in space, e.g 10-16

cm even for the strongest 
sources!

• Therefore they are very hard 
to detect.

0.00000001 cm

38500000000 cm
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Evidence for gravitational waves

• Direct prediction of GR – has 
correctly predicted observed 
effects:
– Perihelion advance of Mercury
– Gravitational lensing
– Shapiro delay

• Binary neutron star systems 
seen to lose energy at exactly 
the rate predicted by loss 
through GWs
– Hulse & Taylor got 1993 Nobel 

prize for this observation GR prediction
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Detecting gravitational waves

• Joseph Weber 
pioneered the first 
efforts to detect GWs 
in the 1960s.

• Needed to design and 
build extremely 
sensitive equipment 
for the job.
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Detecting gravitational waves

• The basic principle of a 
detector is that it detects the 
displacement of two masses 
caused by the passing GW.

• Two main types of detector 
have been used:
– Resonant mass or bar 

detectors
– Laser interferometer 

detectors
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Detecting gravitational waves

• For detectors there are 
many noise sources which 
need to be overcome, 
which are otherwise far 
larger than any GW signal.

• These include seismic, 
thermal, gravity gradient 
and photon shot noise.
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Bar detectors
• These were the first type of detector 

used by Weber in 1960s.
• Consist of a large cylindrical bar 

(generally aluminium) with 
transducer around its middle.

• Bar will vibrate if passing GW is near 
its resonant frequency (inherently 
narrow band detectors).

• Narrow-band – 1-10s of Hz around 
the resonant frequency
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Bar detectors
• Main noise sources for bars are 

seismic noise and thermal noise.
• Seismic noise is reduced by isolating 

the bar with suspensions and 
springs.

• Thermal noise (thermally induced 
vibrations of the bar) is reduced in 
several ways:
– Bar can be cooled using cryostat to 

temperatures of few K – mK.
– Bars are heavy (> 1000kg).
– Bars are kept in vacuum chambers.

• Can only reduce noise – never 
entirely get rid of it.
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Bar detectors

• There are several bar detectors operating 
around the world.
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Bar detectors
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Interferometers
• Michelson and Morley 

attempted to detect presence of 
aether in 1887

• They used an interferometer to 
try to measure changes in the 
speed of light

• Null result provided insight into 
Einstein’s Special Relativity –
speed of light is constant in all 
frames
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Interferometers
• Basic set-up for gravitational 

wave detectors is the 
Michelson interferometer 

• Can use laser to measure 
the displacement of test end 
mirrors – or difference in 
speed of light down the 
arms.

• Split the light down the two 
paths and recombine it

• Differences between the two 
paths will show up as 
changes in the interference 
pattern at the output

strain = ΔL
L

Mirror

Coherent light 
source M

irror

Beam splitter

Detector L ΔL
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Interferometers
• Passing GW causes changes 

in the interferometer arm 
lengths.

• Causes output laser 
interference pattern to change.

• Interferometers are broadband 
– can see a wide range of GW 
frequencies

• Again we have a range of noise 
sources which limit our 
sensitivity
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Interferometers

• Seismic noise is the dominant source of noise in 
low frequencies (Hz – 10s Hz).
– Isolate test masses by suspension
– Have interferometers with long arms (> km).
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Interferometers

• Thermal noise dominates at 
mid-frequencies (10s – 100s 
Hz)
– Choose test mass / mirror 

coating materials for good 
thermal properties e.g. silica 
(glass).

– Have large masses (10’s kg).
– House interferometer in 

vacuum chamber.
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Interferometers

• Photon shot noise dominates at high 
frequencies (100s – 1000 Hz).

• QM nature of light means number of photons 
hitting test masses varies.
– Use high power lasers ~ 10W (cf 5 mW for CD 

player).
– Increase laser power in interferometer arms using 

power recycling (~10 kW).
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Interferometers
• Gravity gradient noise is overall 

limiting factor at low frequencies 
for earth based interferometers.

• Human activity, nature, 
atmospheric changes cause 
local gravity field to change (e.g. 
0.1 kg bird flying 50 m from 10kg 
test mass causes it to move ~ 
10-13 cm over 1 sec cf. 10-16 cm 
for GW) – low frequency (<1 Hz)

• Solution – go into space!
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Interferometers

• Several interferometers in operation / under 
commissioning around the world.
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Interferometers

LIGO

GEO600

VIRGO
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Sources
• Because GWs are so weak, detectable sources have to be the 

most violent and energetic objects / events in the universe

• Must have very large amounts of mass accelerating extremely fast
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Sources
• Sources are 

grouped into 4 main 
catagories 
according to the 
form of GWs 
emitted:
– Bursts
– Periodic / continuous 

waves
– Inspirals
– Stochastic
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Sources
• Different sources cover variety of frequency ranges and strengths
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Burst sources

• Burst sources are those that emit a 
short burst of GWs:
– Supernova
– GRBs
– Binary inspirals
– Stars falling into supermassive black hole
– Neutron star glitches
– Other?
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Bursts – supernova
• Death of a massive star (10s 

of solar masses).
• Core collapses into a 

neutron star or black hole.
• Non-symmetric collapse 

cause burst of GWs.
• Outer layers of star blown 

away.
• See local supernova with 

LIGO

SN1987A
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Bursts – GRBs
• GRBs are short bursts of 

gamma rays (very high 
energy photons) mainly 
originating from extremely 
distant sources.

• First discovered by American 
spy satellites looking for 
evidence of Russian nuclear 
testing.

• Probable explanation now 
thought to be hypernovae and 
binary mergers.
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Bursts – binary inspirals
• Large numbers of stars are 

in binary systems.
• Population of black hole –

black hole, neutron star –
neutron star binaries (Hulse 
and Taylor).

• Orbits of these decay 
through emission of GWs.
– Well modelled until stars get 

pulled apart by strong field
• Final stages of system 

strong GWs are emitted –
can be seen out to many 
Mpc



IoP Talk – University of Sussex
27/02/07

34

Bursts - glitches
• Neutron stars, the extremely stellar 

dense remnants left after supernova, 
can be spinning very rapidly.

• The spin frequency can occasionally 
jump suddenly – called a glitch.

• The mechanism for this is unknown, 
but it could cause the star to ring like 
a bell emitting a burst of gravitational 
waves
– only see local sources within the 

galaxy
• This allows us to perform 

astroseismology i.e. probe the interior 
of the star.
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Cosmic strings
• Cosmic strings are potential 

relics from fractions of seconds 
after the big bang

• Extremely thin and long line like 
objects with very high densities 
(1020 kg/m)

• Strings can contain kinks or 
crack like a whip giving rise to 
an intense gravitational wave 
burst

• GWs possibly one of the only 
ways to detect strings
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Burst searches
• Unmodelled sources e.g. 

supernova
– look for excess power in 

time-frequency plane
– wavelet analysis, data 

statistics change point 
analysis, coherent multi-
detector analysis

• No detection over LIGO 
science runs
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Inspiral searches
• Use a template of the signal (well modelled) to cross-

correlate with the data – matched filtering.
• Searches for NS-NS binaries, NS-BH binaries and BH-BH 

binaries
– reach to ~15 Mpc for NS-NS, ~100 Mpc for BH-BH
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Burst sources

• What can study of bursts tell us?
– Reveal what happens at the heart of supernovae.
– Reveal dynamics of systems pushing the 

extremes of GR theory.
– Give population information of these sorts of 

systems.
– Probe neutron star interiors.
– Possibility to reveal new objects that can’t be seen 

any other way.
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Continuous wave sources

• Main source of continuous 
(periodic) GWs in frequency band 
of current interferometers will be 
neutron stars.
– Pulsars
– Low Mass X-ray binaries (LMXBs)

• White dwarf binaries will be low 
frequency sources – seen with 
LISA
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Continuous waves - pulsars

• Pulsars are neutron 
stars that emit an 
electromagnetic signal 
(mainly observed in 
radio) that appears 
pulsed from Earth, 
analogous to a 
lighthouse.

• Discovered in 1967 by 
Hewish and Bell.



IoP Talk – University of Sussex
27/02/07

41

Continuous waves - pulsars

• Isolated pulsars with 
bumps or mountains (~< 
1 mm), or that precess 
would emit GWs.

• Bumps could be caused 
by crustal deformations.

• Probably only a weak 
source of GWs
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Continuous waves - pulsars

• Newborn pulsars are more 
promising source of GWs.

• Emission could be due to r-
modes (like waves on the sea) 
in the surface of the pulsar.

• Of known pulsars Crab pulsar 
is most promising source, also 
possible pulsar in SN1987A 
remnant.
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Continuous waves - LMXBs
• LMXBs are neutron stars/pulsars in 

binary systems with low mass stars.
• Neutron star accretes material 

emitting X-rays.
• Accretion spins-up neutron star.
• Neutron stars lose energy by 

emitting GWs from r-modes 
otherwise would spin-up until they 
broke up.

• Of known LMXBs Sco-X1 thought 
to be most promising source.



IoP Talk – University of Sussex
27/02/07

44

Known pulsar searches
• Search for periodic 

signals
– frequecy domain (FFTs)
– time domain –

heterodyne with known 
phase

• Set upper limits on 
gravitational waves 
amplitude from known 
pulsars
– can constrain star's 

equatorial ellipticity

Lowest h0 upper limit:

PSR J1802-2124 (fgw = 158.1 
Hz, r=3.3 kpc) h0 min = 4.9x10-26

Lowest ellipticity upper limit:

PSR J2124-3358 (fgw = 405.6Hz, 
r=0.25 kpc) ε = 1.1x10-7

PRELIM
IN

ARY
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Continuous waves
• Detecting GWs from pulsars 

would tell us lots about neutron 
stars that cannot be obtained in 
any other way.

• The GW emission mechanism 
(bumpy neutron star or r-modes) 
can constrain the models of 
neutron stars.

• This can tell us about the internal 
structure of neutron stars
– Tells us about nuclear materials at 

extreme densities
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Neutron star structure
• We cannot reproduce the conditions 

(density, pressure and gravitational 
field) inside a neutron star on Earth

• We know conditions similar to in an 
atomic nucleus – protons and 
electrons – densities 1018 kg/m3 ~ 25 
billion tonnes in a teaspoon!
– Neutron superfluid
– Quark-gluon plasma
– Solid quark star

• Can use gravitational wave 
observations to calculate mass and 
radius of star
– Allows us to constrain models of the 

neutron star interior
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Stochastic sources
• There is a cosmic microwave background 

(CMBR).
• Could also be cosmic background of GWs:

– Primordial (from big bang)
– Combined GWs from other sources could produce a 

background of GWs.
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Stochastic searches
• Cross correlate output of two or more 

detector i.e. use one data set as a filter for 
the other

• Set limits on stochastic background in 
terms of closure density of the universe Ωgw

• S4 upper limit Ωgw < 6.5x10-5

• 1 year of S5 data expect Ωgw~4x10-6 – big 
bang nucleosynthesis limit is 10-5!

• Can also create upper limit map by 
making use of the detector antenna 
patterns
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Stochastic sources
• There are a variety of ways being 

used to look for such primordial 
sources sources:
– studying the polarisation of 

microwaves in the CMBR
– Doppler tracking of spacecraft
– pulsar timing
– Correlations between detectors

• Could be the only way to probe the 
very early universe fractions of a 
second after the big bang.

QUEST

Voyager
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Present status of GW 
searches

• LIGO operating at design sensitivity.
• Have undertaken observation runs in the last 

four years, with the current run having been 
observing for over a year.

• VIRGO will joining data taking soon.
• Several bar detectors also running and being 

upgraded.



IoP Talk – University of Sussex
27/02/07

51

Future - interferometers
• In ~2007/8 LIGO will be upgraded 

(Enhanced LIGO), and again in 2013 
to Advanced LIGO with new 
technologies (pioneered in GEO600) 
to improve sensitivity.
– factor of 10 sensitivity 

improvement equals factor of 1000 
in volume seen

– expect to see few events per week! 
• European (EGO, GEOHF), Japanese 

(LCGT) and Australian (ACIGA) 
collaborations are also looking into 
future detectors covering a range of 
frequencies.
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Future – space based detector
• Laser interferometer 

space antenna (LISA) is 
a joint NASA/ESA 
project for a space 
based GW detector 
planned for a 2015 
launch.

• LISA has 5 million km 
arms.

• Will be able to look at 
low freqs > mHz – not 
limited by gravity 
gradient noise
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LISA sources
• Sources it will see will be:

– compact object binary 
systems – gives us a 
census of these types of 
system

– infall into supermassive 
black holes – enables us 
to map space-time in very 
strong gravity regimes

– Black hole mergers
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Conclusions

• Currently have near continuous operation of 
LIGO
– Produced upper limits from many sources

• Good chance of detecting something – even 
you can help!

• Detector upgrades and LISA should give 
opportunity to start GW astronomy for real.

• Exciting times for GW astronomy! 
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Can I help?
• Yes! This year is World Year of 

Physics or Einstein Year.
• Einstein@home (a 

SETI@home like screensaver) 
has been developed for the 
general public to contribute to 
searching for gravitational 
waves from neutron stars using 
actual data from LIGO and 
GEO

Visit http://einstein.phys.uwm.edu
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