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Producing LF Squeezing

B Use Parametric Amplification

B Noise sources that can mask
squeezing
® Pump intensity and phase noise

® Seed intensity and phase noise

@® Cavity length fluctuations

B These noise sources do not
couple to the squeezed state
when, operated below thresh-
old and vacuum seeded.

McKenzie, Grosse, Bowen, Whitcomb, Gray, McClelland and Lam, PRL (2004)
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Key Technologies

B Doubly Resonant

— Use pump for cavity length control

—> Large effective pump power
— Extra d.o.f. The relative resonance

condition of 532nm & 1064nm

Pump

B Traveling-Wave cavity

— |solation from backscatter

B Crystal: Periodically poled potassium titanyl phosphate (PPKTP)
— High nonlinearity, phase matched at 37°C

— No sign of grey tracking.
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Photos
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Quadrature Scan

B Measured squeezing = 5.4dB
® Subtract electronic noise = 6.5 dB
B Total Det efficiency = 83%
® OPO Escape = 94%

® photodetector = 93%
® LO interference = 96%

® Optics = 99%

B inferred squeezing out of
OPO =8.2dB
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Sqgueezed Vacuum Spectrum

B Locked using quantum noise @ Homodyne detector not SNL
locking! below few hundred Hz
— Due to scattered light, beam jitter?

— Limits measurement of squeezing
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[1] McKenzie, Mikhailov, Goda, Lam, Grosse, Gray, Mavalvala and McClelland JOB (2005)
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Lock stability

B Good stability

B Limited by range of actuators/temperature stability of Lab
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Suspension TN measurement

Small mirror mounted on soft niobium flexure
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Thermal Noise Measurement

Error Signal FFT [m, . /rt HZ]
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B Fits velocity damped model ® Measurement with small detuning
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Servo enhanced cooling of a flexure

B A detuned cavity gives rise to an optical spring, kg

B Servo interaction with the cavity response modifies the optical spring!

The magnitude of the optical spring becomes

ko

L —
Y /142Gy cos(yp) + G2

Y = loop phase, Gy = loop magnitude. The phase is rotated to

_ —1 Go sin(y)
Gopt = tan (1 + Gy COS(¢)>

This allows optical cooling well inside the cavity linewidth

[1] Mullavey, ANU honors thesis (2006), [2] Schediwy et al, LSC Tech Review (2006)
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Servo enhanced cooling of a flexure

The optical spring modifies the flexure thermal noise spectrum;

:%2 B 4 kB Tgb w%
th =
mw [(u)2 —wi—k, cos(@opt)/m)2+ (pws + kg sin(QOpt)/m)Z]

T - temperature, ¢ - loss angle m - mass, wg - resonance freq.

B Spring can be stiffened/weakened o cos 8,

B Spring can be damped/anti-damped o sin 0,
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Theory

Displacement noise [m,,c/rt Hz]
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Here d is detuning. d = 1 = Half-width at half max.
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Experimental setup

B Frequency stabilization via a monolithic reference cavity

B Test cavity controlled using PDH, 300 H z bandwidth

B Variable input power (0 — 200 mW), cavity detuning (6 = 0 — 0.5)
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Data
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Summary

B Nice squeezer design

B Stable low frequency squeezing

B Measurement of suspension thermal noise

B Servo enhanced cooling of thermal noise to 82mK
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