

Large Aperture Dielectric Gratings for High Power LIGO Interferometry

Jerald A. Britten, Hoang T. Nguyen, James D. Nissen, Cindy C. Larson, Michael D. Aasen, Thomas C. Carlson, Curly R. Hoaglan *Lawrence Livermore National Laboratory*

Patrick Lu, Ke-Xun Sun, Robert L. Byer Stanford University

LSC/Virgo Meeting, Baton Rouge March 19-22, 2007 Optics Working Group

> This work was performed under the auspices of the United States Department of Energy by the University of California Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48

UCRL-PRES-229023 G070148-00-Z

- LIGO needs reflective grating beamsplitters for high-power interferometry.
 - Transmissive optics suffer from thermal lensing.
 - > CO_2 heating laser already required for ITM's on initial LIGO.
 - > Advanced LIGO will require 830kW of circulating power in the arms. For a 6cm spot size, that comes out to 30kW/cm² of intensity.

- Significant investment and progress has been made in the development of multilayer dielectric diffraction gratings for high-energy Petawatt-class laser systems.
 - Projects such as LIGO are poised to take advantage of this capability.

K.X. Sun, et. al, "All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters," Optics Letters, **8**(23), p. 567-9 (1998)

The goal of this study is to build and test a working model of this configuration.

 Large Aperture 31.4 cm mirror diameter¹. Gratings must be 83 cm based	 Low thermal aberrations Advanced LIGO: 830 kW
on a 67° Littrow angle.	circulating in arm cavities ² 6 cm spot size Intensity: 30kW/cm²
 High Efficiency 99.5% desired³ Over large aperture for beam quality 	 Low Scattering Light scattering noise couples seismic activity into signal

¹ P. Barriga, et. al, "Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors," http://www.ligo.org/pdf_public/barriga.pdf

² C. Zhao, et. al, "Compensation of Strong Thermal Lensing in High Optical Power Cavities," gr-qc/0602096 v2

³ Miyakawa, et. al, "Measurement of Optical Response of a Detuned Resonant Sideband Extraction Interferometer," LIGO-P060007-00-R

LIGO

MLD grating fabrication process flow

Ratioing scanning photometry setup @ LLNL for efficiency measurements

LIGO

Gratings exhibit flat diffracted wavefront

UCRL-PRES-229023

LIGO aperture required has been demonstrated for other projects

#005 (800x400 mm) @ 1053 nm, 72.5^{o:} **97.3% Ave, 0.7% RMS ***

GSI5_06_04_19_221034_EFF_XLS

#011: **97.1% Ave** @ 1053 nm, 72.5°, so this grating could be >99% for LIGO conditions

Byer Group Laser Lab

Laser lab is being set up for high power cw laser heating characterization of LLNL gratings NPRO Oscillator and Rod Amplifiers

LIGO Initial thermal testing of 100 mm diameter LLNL MLD witness grating

Thermal testing of 100 mm diameter LLNL witness grating

Grating wavefronts measured at two power densities show no difference

L

3mm HeNe Probe Beam

UCRL-PRES-229023

- Fiber laser and amplifiers to enable 100 W of single mode light
- Cavity configuration to enable thermal tests to reach ~30 kW/cm² for centimeter-scale beams
- Large-aperture efficiency measurements will be made at Stanford to corroborate LLNL measurements
- Scatterometer measurements, including back leaks

Efficiency/Finesse Measurements planned for near future

Thermal aberration measurement at higher power planned for near future

- Capability exists to manufacture large-aperture multilayer dielectric diffraction gratings for demanding LIGO applications
 - >99% diffraction efficiency in Littrow mount
 - kW power-handling capability
 - 80+ cm apertures

