

Status of the Advanced LIGO PSL development

Benno Willke for the PSL team

LSC meeting, Baton Rouge March 2007

G070137-00-Z

Advanced LIGO prestabilized laser

development and fabrication plan

	stabilization		
	development	laboratory prototype:	demonstrate concepts
	laser development	functional prototype:	demonstrate specs
	integration	engineering prototype:	fit / form / function
	laser – stabilization		

status March 2007

- AEI funding is approved
- contract between AEI and LZH is in place
- fully staffed (7 people @ LZH, 4 people @ AEI, spending money)
- LZH labs renovated
- first NPROs for the observatories arrived
- first Enhanced LIGO type laser will be delivered early summer
- MOU between AEI and LIGO Lab is in preparation

- new air condition
 - 15-20 air changes
 - higher temperature stability
 - Class 1000 Filter
- airlock
- particle counts:
 - floor: > 50.000
 - lab: ~ 2.000
 - table: 0
- 120 kVA UPS

Advanced LIGO prestabilized laser

- 4 out of 8 Master lasers (2W NPROs) are delivered
- they have a special interface
- characterization program
 - power, slope, power in p-pol
 - RIN:
 - noise spectrum 1Hz 100kHz,
 - time series (60min) rms
 - frequency noise
 - spectrum 1Hz 100kHz
 - upper limit for drift
 - PZT and slow actuator calibration
 - beam quality
 - higher order mode content
 - beam pointing

D1 Power Monitor	Set Temperature LD1
GND	GND
D2 Power Monitor	Act. Temperature LD1
3ND	GND
CTC1 Error	Set Temperature LD2
GND	GND
1. C .	Act. Temperature LD2
GND	GND
1.C.	Set Temperature Crystal
GND	GND
DTC1 Error	Act. Temperature Crystal
GND	GND
DTC2 Error	Set Current
GND	GND
Guard LDTC1	Act. Current
GND	GND
Guard LDTC2	Status Laser ON
GND	GND
I.C.	n.c.
SND	GND
I.C.	Remote SW
BND	GND
E Monitor	Remote SW ON
BND	GND
nterlock	Remote SW OFF

Advanced LIGO NPRO characterization

amplifier design

- Crystal: 3 x 3 x 10 mm³ Nd:YVO₄ 8 mm 0,3 % dot. 2 mm undoped endcap
- Pump diode: 808 nm, 45 W 400 µm fiber diameter NA=0,22

 amplifier: 38W for 2W seed and 150W pump

Advanced LIGO 35W front-end

- front end will be assembled on breadboard and delivered in single housing
- AOM and isolators included
- NPRO and amplifier controlled via Beckhoff touchpad
- Interface to EPICS

front end – pump power and control

lab prototype – changes since last year

- changed front-end to Enhanced LIGO design
- optimize resonator design
- identify critical components
- improve beam quality
- improve injection locking
- current state:
 - 150W output power; 85% in TEM_{0,0}

error signals 12MHz vs. 35MHz

improved isolation

220 240 260 280 300

pump-chamber design: RIN/ water flow

15

functional prototype

- 7 instead of 10 fibers
 - 7 x 45 W
- new homogenizer
 - higher pump brightness
- new laser head design
- whole resonator on base plate

improved laser head design

- front end
 - components in house, setup starts next week
- high power stage
 - mechanical design ready
 - components in mechanical workshop
 - diode boxes currently build
- standing wave resonator test
 - new fiber design works
 - high brightness pumping gives similar results as achieved with 10 diodes
 - 90W TEM_{0,0} output power

frequency stabilization

PMC design

- thermal loading
 - PMC design based on thermal loading experiment by A. Bullington (Stanford)
 - assumption: less than 3ppm absorption
 - allow for a total of 10mW absorbed power
 - finesse 50 (3kW circulating power)
- in sealed housing, vacuum required ?
- rf filtering
 - 4dB @9MHz
 - sufficient? , increase length?

20

power stabilization

diagnostic bread board

beam diagnostic setup

NPRO (filtered by a fiber and PMC)

Finesse: 366 ±5 higher order mode power: 0.56% ±0.3%

Gaussian mode expansion

beam pointing

[[]svn://pat/diss/Data/2007-02-16/behindpmcparticles.plt, rev. 791, 13 Mar 2007, Patrick Kwee, kwee@bigfoot.de]

RIN – Advanced LIGO NPRO

27

location and control - Advanced LIGO

Advanced LIGO PSL setup

