High power optical components for Enhanced and Advanced LIGO

Volker Quetschke, Muzammil Arain, Rodica Martin, Stacy Wise, Wan Wu, Luke Williams, Guido Mueller, David Reitze, David Tanner

University of Florida

Supported by NSF grant PHY-0555453

Optics/Lasers WG, March 21, 2007

Outline

eLIGO phase modulator

AdvLIGO Mach-Zehnder

eLIGO/AdvLIGO Faraday isolator

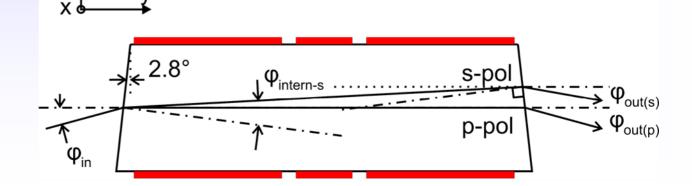
eLIGO phase modulator

- After S5 LIGO will be upgraded to eLIGO
- Laser power will be increased to 30 W
- Electro-optic modulators (EOMs) must be replaced.
 - LiNbO3 modulators would suffer from severe thermal lensing or might even break
- Faraday isolators (FIs) must also be replaced
 - Absorption in the FI leads to thermal lensing, thermal birefringence, and beam steering
- eLIGO devices (techniques) will be used in AdvLIGO

Overview eLIGO EOMs

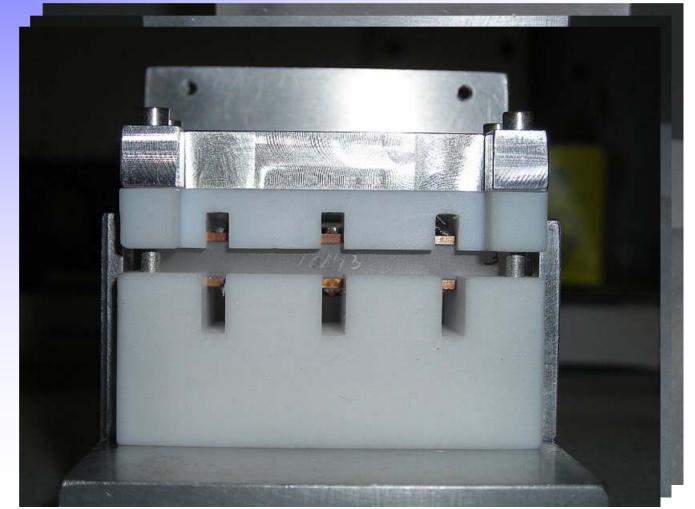
eLIGO EOMs

- Lithium niobate (LiNb03), used in initial LIGO, not satisfactory
 - Thermal lensing / Damage / Residual absorption
- Choose RTP (rubidium titanyl phosphate RbTiOPO4) as EO material
 - RTP has significantly lower absorption and therefore thermal lensing.
- Use custom made housing to separate the crystal housing from the housing for the resonant circuit.
 Advantage: Resonant frequencies can be changed without disturbing the optical alignment.
- Use wedged crystals to reduce spurious amplitude modulation
 Additional advantage: EOM acts as polarizer


Wedged RTP crystal

AR coatings (< 0.1%) on crystal faces.

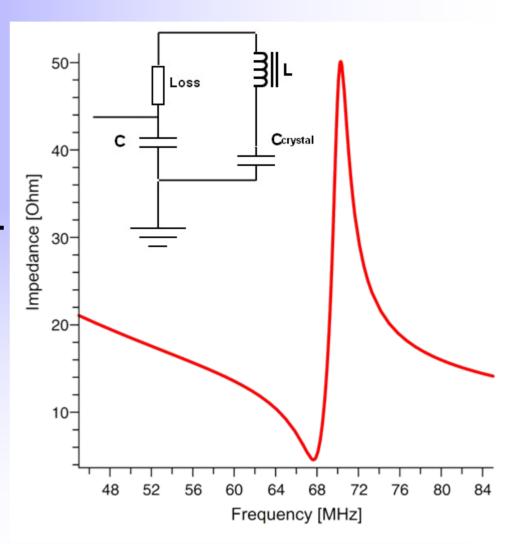
- Wedged crystal separates the polarizations and acts as a polarizer.
 - This avoids cavity effects and reduces amplitude modulation.


Polarization	Angle [degrees]
р	4.81
S	4.31

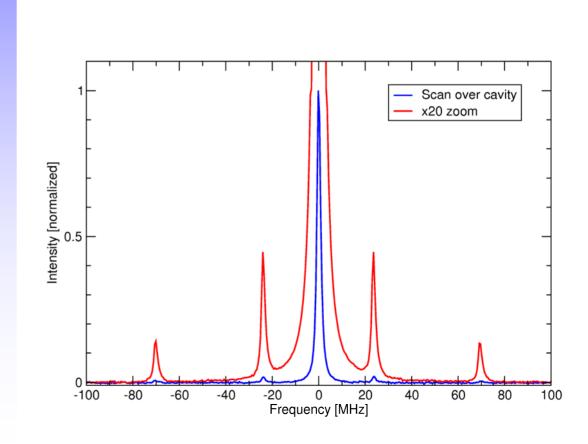
LIGO Three Modulations / Single Crystal design

 Use one crystal but three separate pairs of electrodes to apply three different modulation frequencies at

once.


Industry-quality housing

 Separate the crystal housing from the housing of the electronic circuits to maintain maximum flexibility.

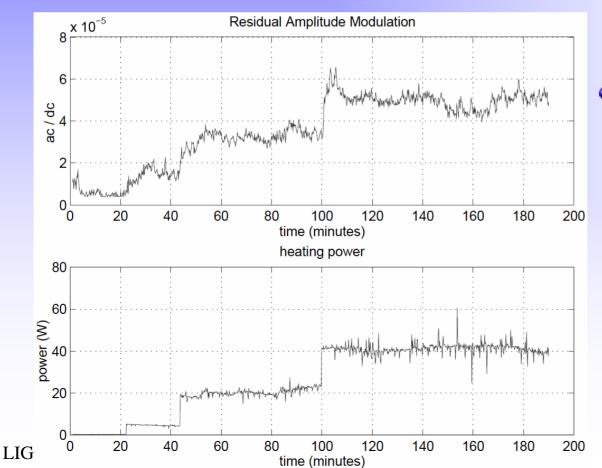

Resonant circuit

- Impedance matching circuit in separate housing.
- Resonant circuit with 50 Ω input impedance.
- Current prototype has two resonant circuits:
 - 23.5 MHz and 70 MHz

Modulation index measurement

- Sideband measurement with 10 V_{pp} drive into 23.5 MHz and 70 MHz input.
 - $-m_{23.5} = 0.29$
 - $-m_{70} = 0.17$

Thermal properties


- Use a YLF laser was used to measure the thermal lensing.
 - Full Power = 42 W
 - Beam Waist = 0.5 mm (at RTP)
 - 4x4x40 mm RTP crystal

Axis	Focal length	
X-axis	3.8 m	
Y-axis	4.8 m	

compare with LiNbO3 (20 mm long):
 f_{thermal} ~ 3.3 m @ 10 W

RFAM

 Measurement of RFAM, for RTP crystal with parallel faces (previous prototype @19.7 MHz, comparable with current LiNbO3 EOMs but better thermal properties)

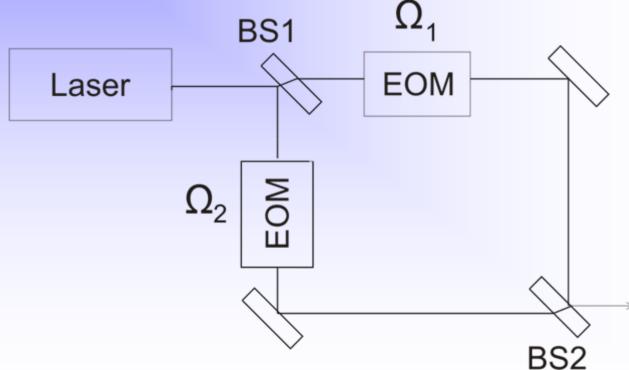
Preliminary result for the new prototype:

$$\Delta I/I < 10^{-5}$$
 at Ω_{mod}
 $\Omega_{mod} = 25$ MHz
m = 0.17

LIGO AdvLIGO Mach-Zehnder (parallel) modulation

 Not really a high power issue, but needs to be addressed also.

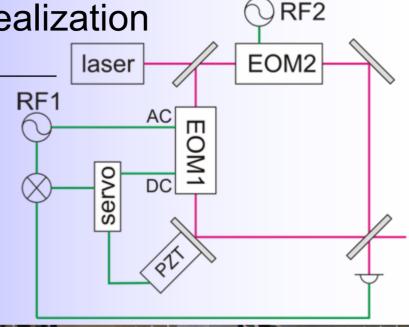
Objective:

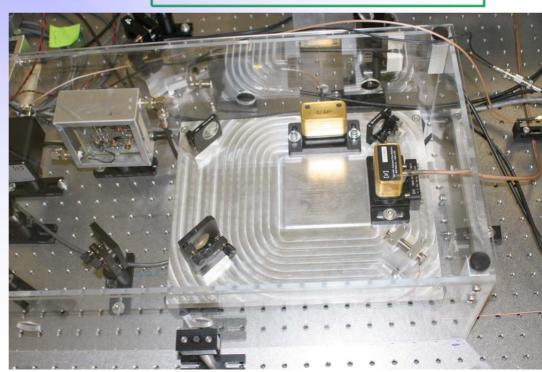

- Solve the sidebands on sidebands problem by using parallel modulation.
- Currently used in the 40m prototype

Problems:

- Sideband power reduced by a factor of 4
- Additional intensity noise at modulation and mixing (sum/difference) frequencies
- Excess intensity, frequency and sideband noise is possible depending on the stability of the MZ and the corner frequencies of the MZ stabilization loop.
- Only address the last point for now ..

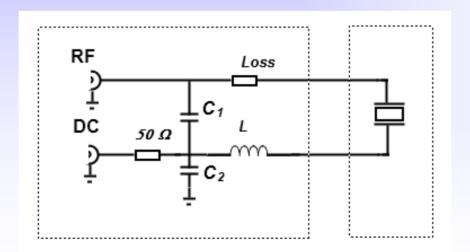
MZ modulation scheme

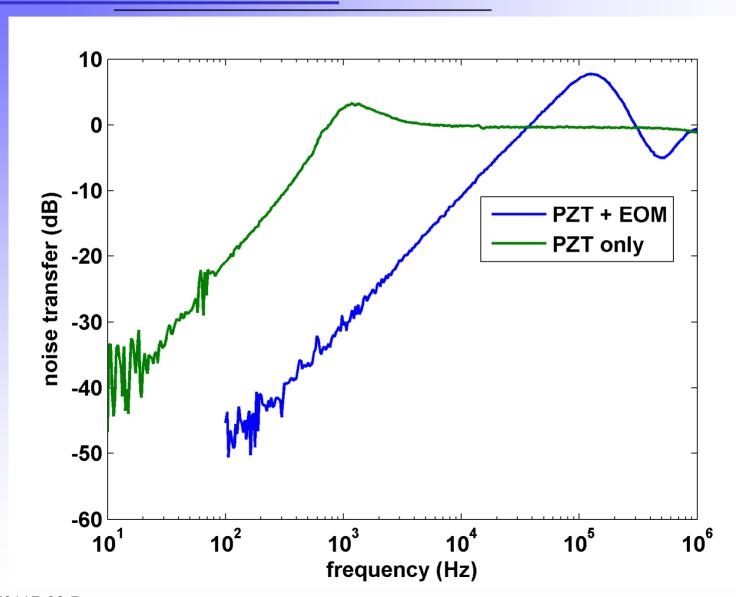

- Parallel modulation with two modulation frequencies
- Avoid the sideband-on-sideband problem by separating the beams



Experimental realization

 Slow length control with big dynamic range with PZT


- Fast phase control with phase correcting EOM
- Stable mechanical "quasi-monolithic" design
- Reduce environmental effects with a Plexiglas enclosure.
- Modulation at 25 MHz and 31.5 MHz



Resonant/DC EOM

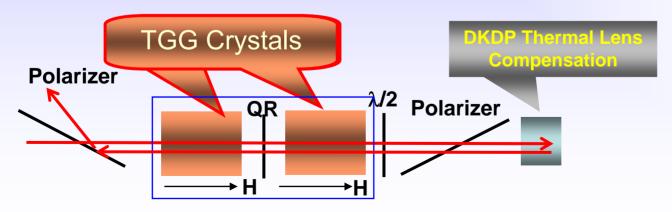
- To realize the fast phase correcting without using an additional EOM a slightly modified resonant circuit was used.
 - Simultaneous modulation at resonant frequency
 - DC phase changes up to 1 MHz possible

Noise suppression TF

MZ summary

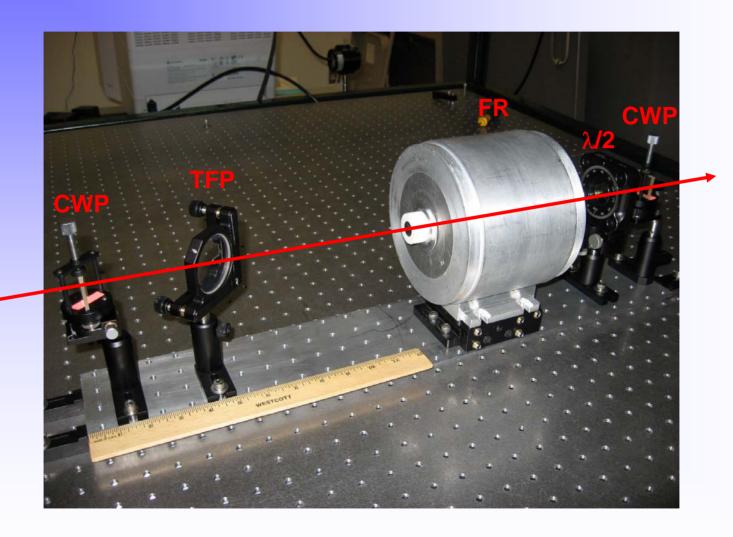
- Low noise performance of the PZT control (driven directly out of an OpAmp provides ~4 µm dynamic range)
- Fast phase correcting EOM currently limits the unity-gain frequency to 50 kHz but is only limited by the current servo electronics

eLIGO/AdvLIGO Faraday isolator

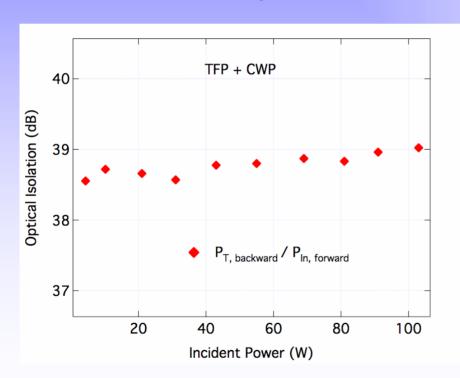

Objective:

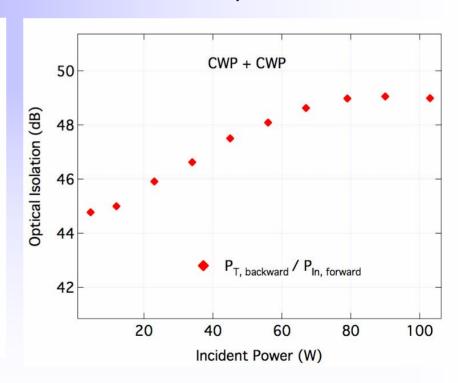
- Strong suppression of back reflected light.
 - eLIGO ~ 30 W
 - AdvLIGO ~ 130 W
- Minimal thermal lensing
- Minimal thermal beam steering

Designed and parts supplied by IAP/UF


Faraday isolator

- Faraday rotator (FR)
 - Two 22.5° TGG-based rotators with a reciprocal 67.5° quartz rotator between
 - Polarization distortions from the first rotator compensated in the second.
 - ½ waveplate to set output polarization.
 - Thermal lens compensation via negative dn/dT material: deuterated potassium dihydrogen phosphate, KD₂PO₄, or 'DKDP').
- Calcite wedges or TFP polarizers are possible


FI set up at LLO


Performance measurements

Suppression is affected by the polarizers:

TFP and calcite polarizer

Two calcite polarizers

Thermal lensing / steering

Thermal lensing is compensated by DKDP

- Beam steering is measured to be smaller than (@ 100 W)
 - 80 μrad for two calcite wedges
 - 50 μrad for the TFP / calcite wedge setup

Conclusion

• Everything seems to be on track!

Supplementary material

RTP Thermal properties

Properties	Units	RTP	RTA	KTP	LiNb0 ₃
dn_{x}/dT	10 ⁻⁶ /K	-	-	11	5.4
dn/dT	$10^{-6}/K$	2.79	5.66	13	5.4
dn_z/dT	$10^{-6}/K$	9.24	11.0	16	37.9
K_{χ}	W/Km	3		2	5.6
K_{v}	W/Km	3		3	5.6
κ_z	W/Km	3		3	5.6
α	cm ⁻¹	< 0.0005	< 0.005	< 0.005	< 0.05
Q_x	1/W	-	-	2.2	4.8
$Q_{\rm y}$	1/W	0.047	0.94	2.2	4.8
Q_z	1/W	0.15	1.83	2.7	34

Optical and electrical properties

Properties	Units/conditions	RTP	RTA	LiNbO ₃
Damage Threshold	MW/cm ² ,	>600	400	280
n_x	1064nm	1.742	1.811	2.23
$n_{\rm v}$	1064nm	1.751	1.815	2.23
n_z	1064nm	1.820	1.890	2.16
Absorption coeff. α	cm ⁻¹ (1064 nm)	< 0.0005	< 0.005	< 0.005
r_{33}	pm/V	39.6	40.5	30.8
r_{23}	pm/V	17.1	17.5	8.6
r_{13}	pm/V	12.5	13.5	8.6
r_{42}	pm/V	?	?	28
r_{51}	pm/V	?	?	28
r_{22}	pm/V			3.4
$n_z^{3}r_{33}$	pm/V	239	273	306
Dielectric const., ε_{z}	500 kHz, 22 °C	30	19	
Conductivity, σ_z		~10-9	$3x10^{-7}$	
Loss Tangent, d_z	500 kHz, 22 °C	1.18	-	