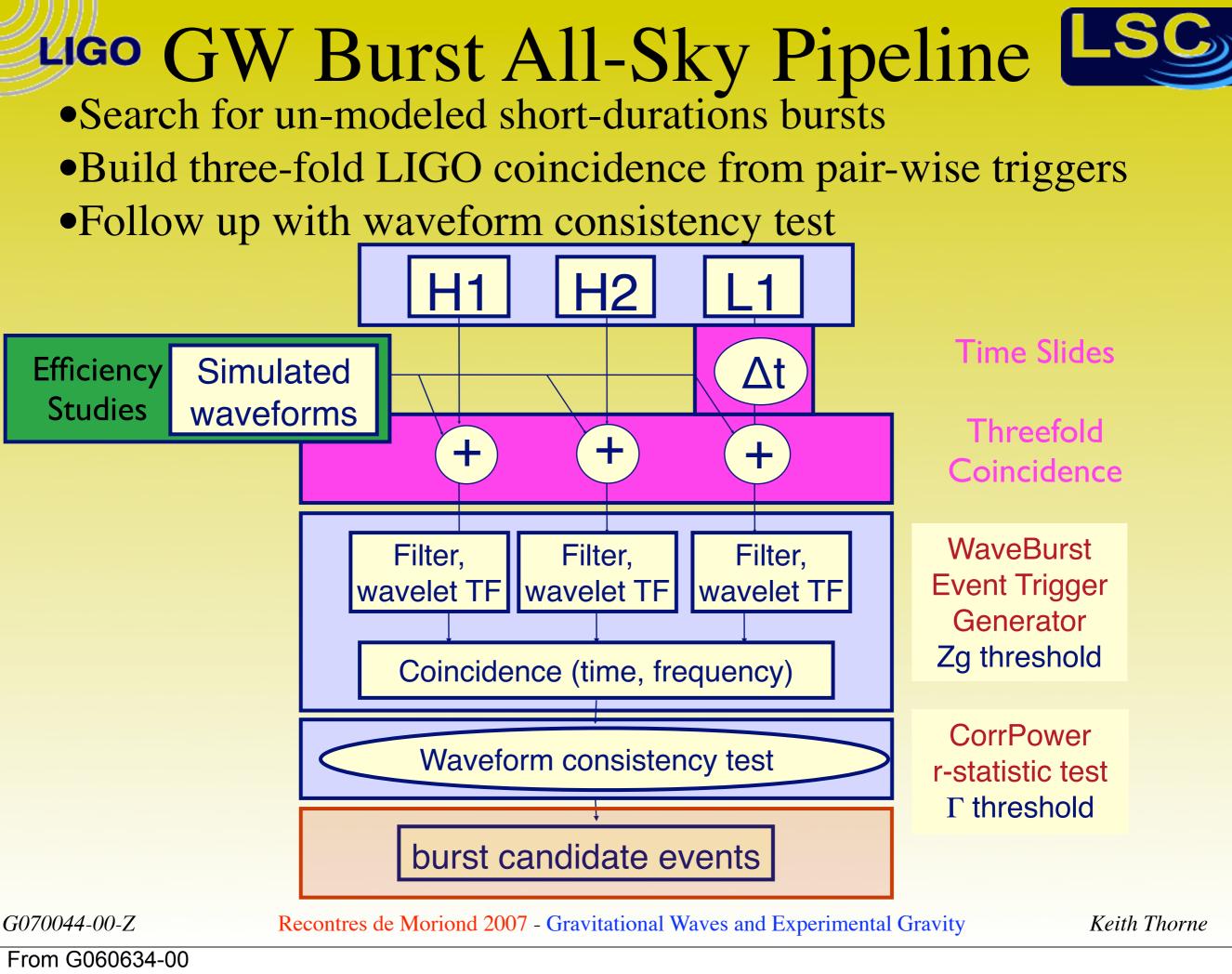


#### LIGO

# Searching for GW Bursts with LIGO

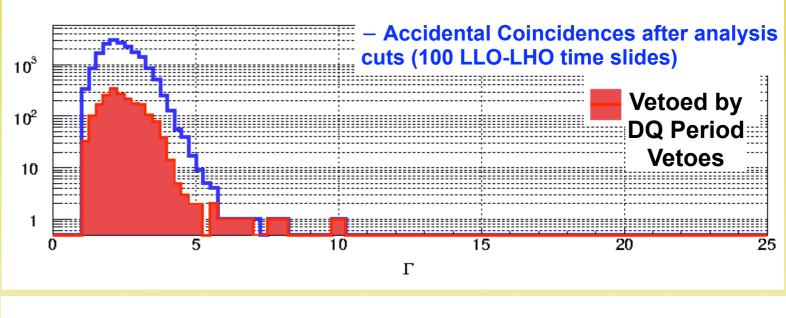

#### Keith Thorne Pennsylvania State University For the LIGO Scientific Collaboration (LSC)

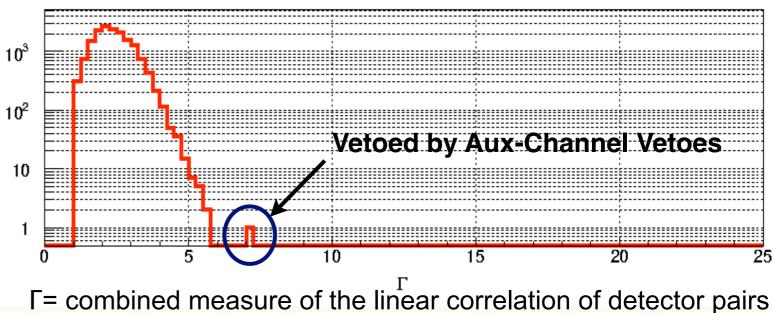
G070044-00-Z

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity



- Current Results From LIGO
  - Un-triggered all-sky searches
  - Triggered searches for bursts from GRBs, SGRs
- The Road Ahead
  - Analysis with a Network of Detectors
  - Waveform Extraction
  - Astrophysical Interpretation
- Concluding Remarks





(O'Reilly)

# Ligo Data-Quality Period and Auxiliary-Channel Vetoes

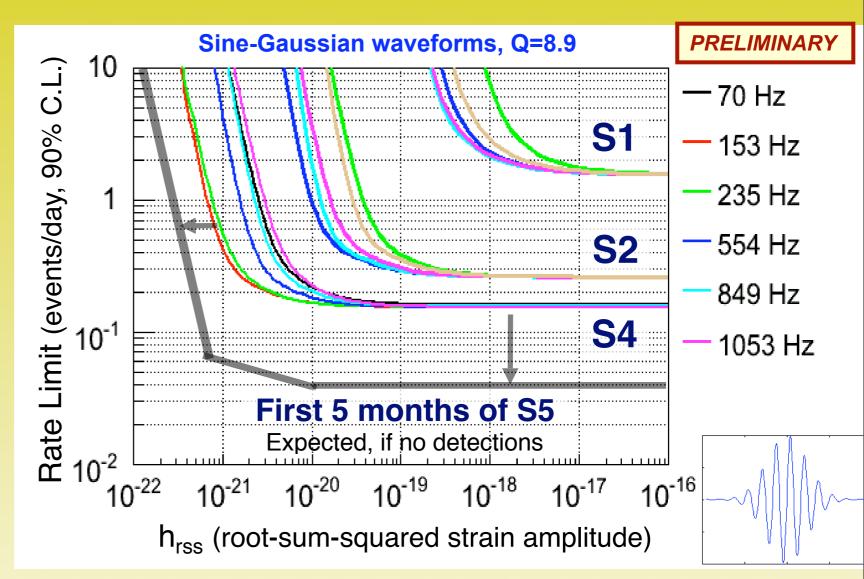
- LIGO-only Burst GW analysis has significant background from non-Gaussian transients
- Transients at co-located LIGO detectors (H1,H2) a concern
- Periods with known artifacts, unreliable data are flagged as <u>Data Quality (DQ) period vetoes</u>
- Transient events in auxiliary channels (environmental, interferometer) that are coherent with GW channel are flagged as <u>Aux-Channel vetoes</u>
- These vetoes clean up the final trigger samples

#### Effect of Vetoes on early S5 result





G070044-00-Z


 $\Gamma = (\Gamma_{H1H2} + \Gamma_{H1L1} + \Gamma_{H2L1})/3$ Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

Plots taken from Slide 13 of G060628-00-Z (Cadonati) and Slide 8 of G060634-00-Z (O'Reilly)

# All-Sky Search from S1 to S5

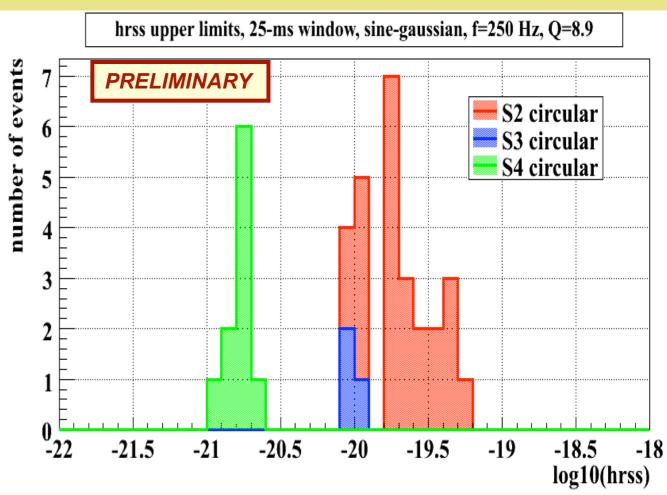
- Tuned for 64–1600 Hz, duration «1 sec
- No GW bursts signals seen in S1/S2/S3/S4
- Ad-hoc waveforms (Sine-Gaussian, Gaussian, etc.) used to determine detection sensitivity
- Convert to corresponding energy emission sensitivity (assuming isotropic, *h*<sub>+</sub> only polarization)



$$E_{GW} = (2.1 \mathrm{M}_{\odot} \mathrm{c}^2) \left(\frac{R}{100 \mathrm{Mpc}}\right)^2 \left(\frac{f}{100 \mathrm{Hz}}\right)^2 \left(\frac{h_{rss}}{10^{-21} \mathrm{Hz}^{-1/2}}\right)^2 \quad h_{rss} \equiv \sqrt{\int (|h_+(t)|^2 + |h_{\times}(t)|^2) \, dt}$$

We are sensitive to  $E_{GW} \sim 0.1 \text{ M}_{\odot}c^2$  at 20 Mpc @153 Hz

G070044-00-Z


Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

Plot taken from slide 15 of G060634-00-Z (O'Reilly).

# **GRB** Search Results

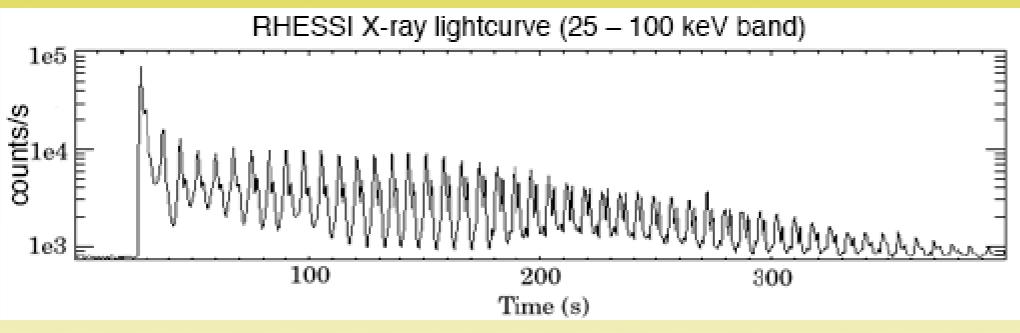
- Search for short-duration gravitational-wave bursts (GWBs) coincident with GRBs using S2, S3 and S4 data from LIGO
- Analysis based on pair-wise cross-correlation of two interferometers
   Increased observation time over triple-coincidence
- Target GWB durations: ~1 ms to ~100 ms; Bandwidth: 40-2000 Hz
- No GW signal found associated with 39 GRBs in S2,S3,S4 runs (Sensitivity similar to untriggered search)
- About 10 GRBs/month during current S5 run



*G070044-00-Z* 

LIGO

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity


Based on G060652-00 (Mohanty). Plot is from page 10 of that talk. E\_GW limit is not included to avoid confusion with untriggered result





## SGR 1806-20 Result

- Record flare from Soft Gamma-Ray Repeater SGR 1806-20 on December 27, 2004
  - Quasi-periodic oscillations (QPO) in RHESSE, RXTE x-ray data



- Only one LIGO detector (H1) was observing
- Band-limited excess-power search for quasi-periodic GW signal
- No evidence for GW signal found
- Sensitivity for 92.5Hz QPO  $E_{GW} \sim 10^{-7}$  to  $10^{-8}$  M $_{\odot}$  at 5-10 kpc (this is comparable to electro-magnetic energy in flare)

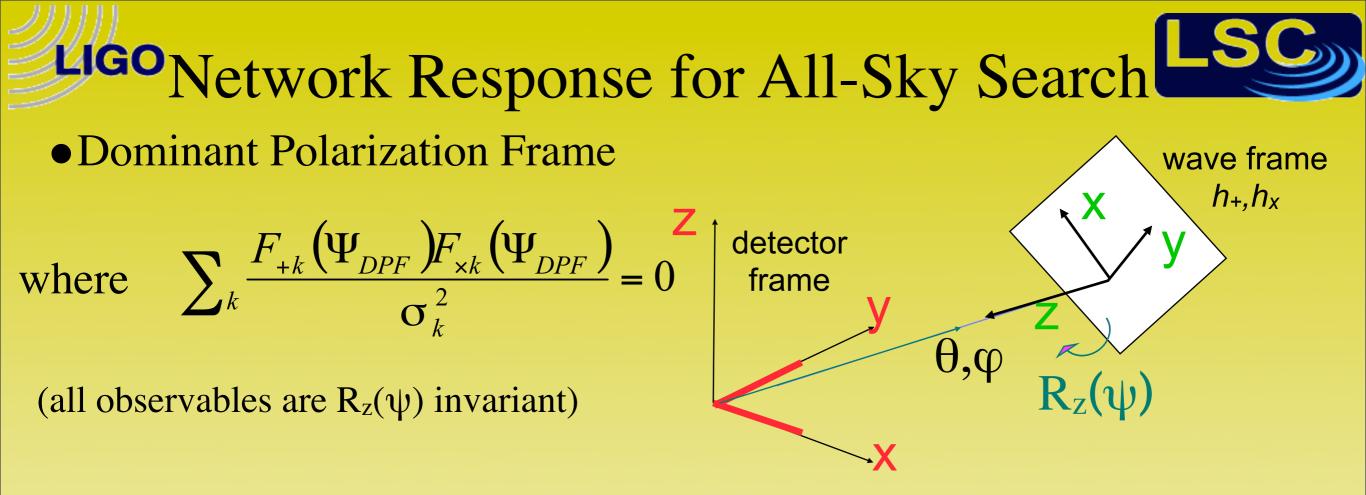
G070044-00-Z

LIGO

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

Taken from G060631-00 (Matone). Plot is from Page 3. Result is from Page 24 in G060597-00 (Marx)


## The Road Ahead



- Existing all-sky and GRB search pipelines operating in S5
- There is near-online analysis of all LIGO data for prompt chance of observation, identification of transients
- But for GW Bursts, the Network is the Observatory
  - LIGO-only searches require intense "transient" investigations
  - Previous analyses did not make full use of network constraints
  - We need to prepare for the addition of Virgo to networks
- We are also moving from Upper Limits to Detection
  - Need to extract Waveforms when GW Bursts detected
  - Move on to Astrophysical Interpretation of Results

G070044-00-Z

LIGO



• Solution for GW waveforms satisfies the equation

$$\begin{bmatrix} \sum_{k} \frac{x_{k}[i]}{\sigma_{k}^{2}} F_{+k} \\ \sum_{k} \frac{x_{k}[i]}{\sigma_{k}^{2}} F_{\times k} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \sum_{k} \frac{F_{+k}^{2}}{\sigma_{k}^{2}} & 0 \\ 0 & \sum_{k} \frac{F_{\times k}^{2}}{\sigma_{k}^{2}} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix} \circledast \begin{bmatrix} X_{+} \\ X_{\times} \end{bmatrix} = g \begin{bmatrix} 1 & 0 \\ 0 & \varepsilon \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix}$$

- g network sensitivity factor
- $\varepsilon$  network alignment factor

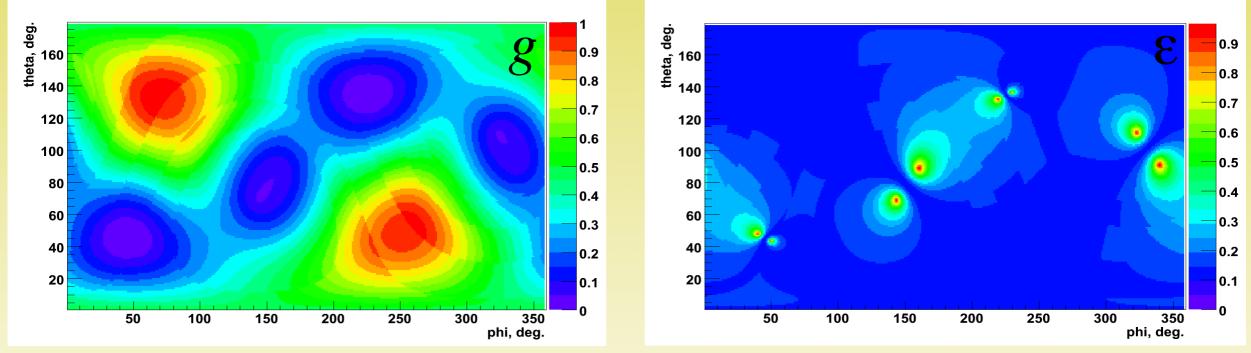
network response matrix (PRD 72, 122002, 2005)

G070044-00-Z

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

Taken from Page 4 of G060621-00 (Klimenko)


#### Virtual Detectors & Constraint LIGO



• Any network can be described as two virtual detectors

| detector | output         | noise var. | likelihood                    | SNR                                          |
|----------|----------------|------------|-------------------------------|----------------------------------------------|
| plus     | $X_+$          | g          | $L_{+}=X_{+}^{2}/g$           | $g\langle h_{\scriptscriptstyle +}^2  angle$ |
| cross    | X <sub>x</sub> | Eg         | $L_x = X_x^2 / \varepsilon g$ | $\epsilon g \langle h_{\star}^2 \rangle$     |

#### • L1×H1×H2 network not sensitive to $h_x$



• Use "soft constraint" on the solutions for the  $h_r$  waveform.

- remove un-physical solutions produced by noise
- may sacrifice small fraction of GW signals but
- $L = L_{+} + L_{\times}$  $L_{soft} = L_{+} + \varepsilon L_{\times}$ • enhance detection efficiency for the rest of sources  $L_{soft}$

G070044-00-Z

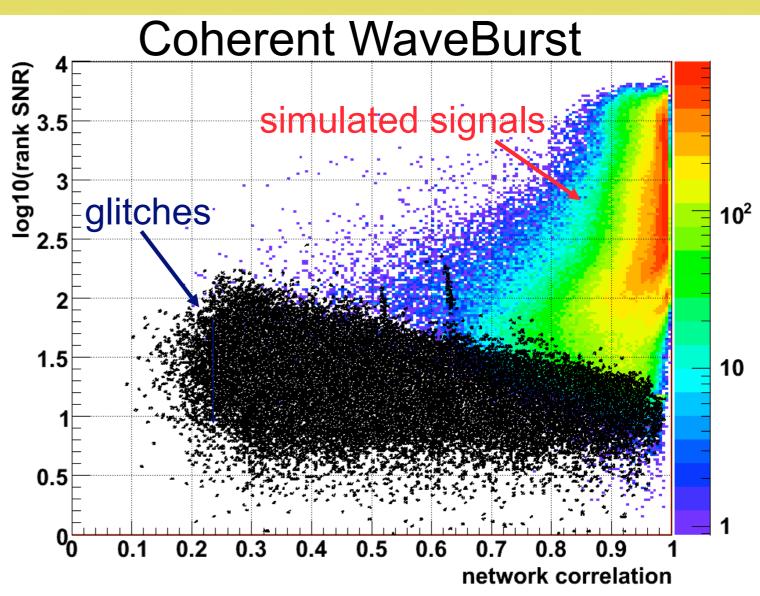
Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

Taken from Page 5 of G060621-00 (Klimenko)

# Coherent Energy & Correlation

• detected energy: in-coherent coherent  $2L = \sum_{i,j} \langle x_i x_j \rangle C_{ij} = E_{i=j} + E_{i\neq j}$ 


 $C_{ij}$  - depend on antenna patterns and variance of the detector noise

 $x_i$ ,  $x_j$  – detector output

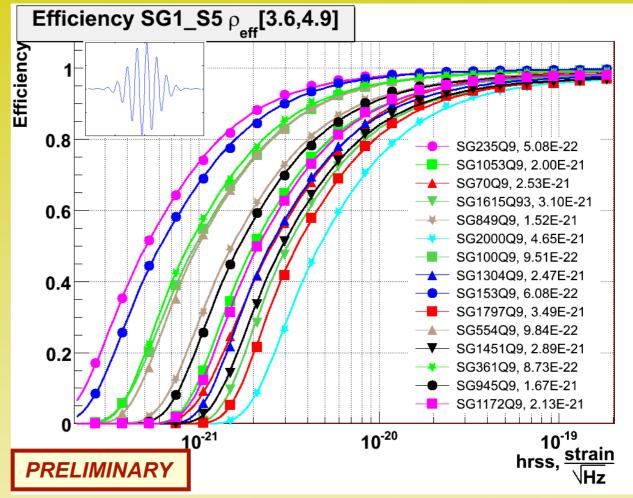
• Network correlation  $C_{net} = \frac{E_{coherent}}{E_{coherent}}$ 

$$= \overline{N_{ull} + E_{coherent}}$$

Require  $C_{net} > 0.65$ 



G070044-00-Z


Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

From Page 11 of G060621-00 (Klimenko)

## Coherent WaveBurst Performance

- Use standard sets of ad hoc waveforms (Sine-Gaussian, etc.) to estimate pipeline sensitivity
- Coherent search has comparable or better sensitivity than the incoherent search
- Very low false alarm (~1/50 years) is achievable



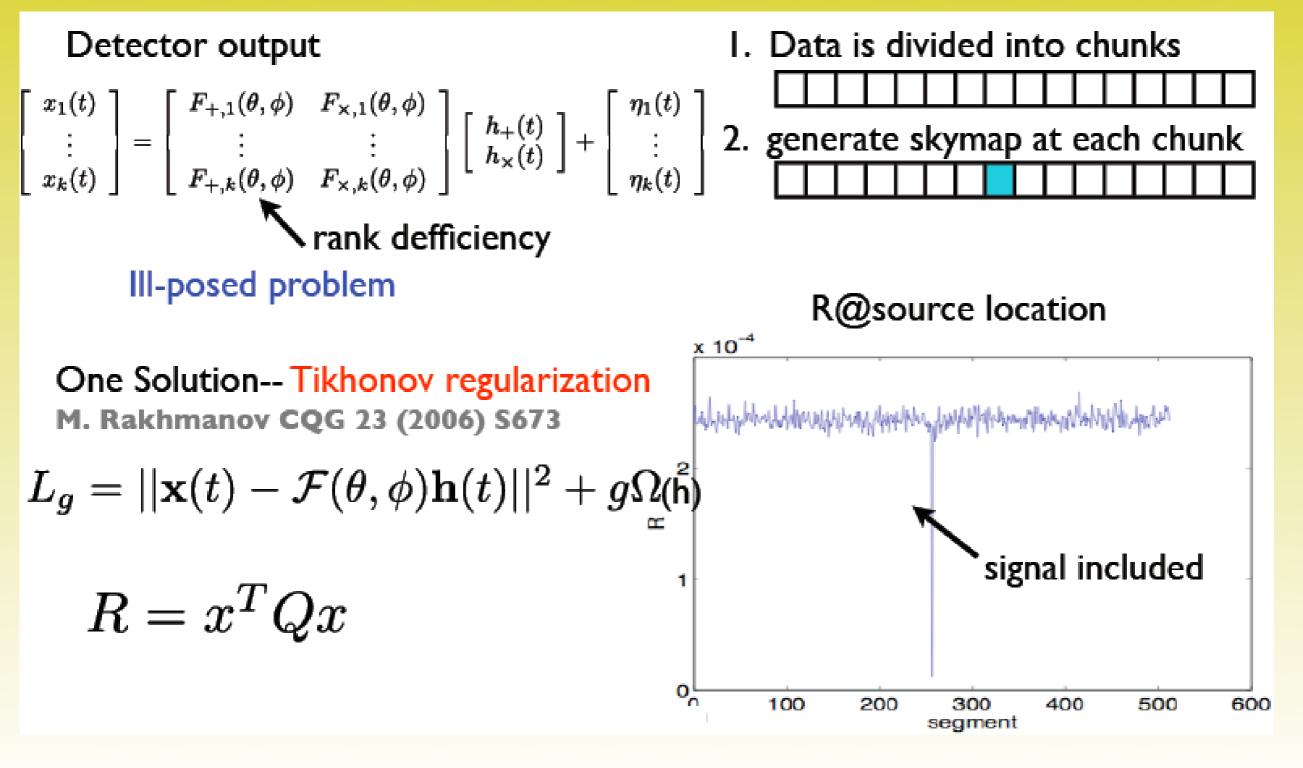
#### PRELIMINARY

h<sub>rss</sub>@50% in units 10<sup>-22</sup> for SGQ9 injections

| rate        | search | 70   | 100  | 153 | 235 | 361  | 553  | 849  | 1053 |
|-------------|--------|------|------|-----|-----|------|------|------|------|
| S5a: 1/2.5y | WB+CP  | 40.3 | 11.6 | 6.2 | 6.6 | 10.6 | 12.0 | 18.7 | 24.4 |
| S5a: 1/3y   | cWB    | 28.5 | 10.3 | 6.0 | 5.6 | 9.6  | 10.7 | 16.9 | 21.9 |

expected sensitivity for full year of S5 data for high threshold coherent search

|           | •   |      |     |     |     |     |     |      |      |
|-----------|-----|------|-----|-----|-----|-----|-----|------|------|
| S5: 1/46y | cWB | 25.3 | 9.5 | 6.1 | 5.1 | 8.7 | 9.8 | 15.2 | 20.0 |


G070044-00-Z

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

## Ligo Coherent Network for GRB Search



#### • Analyze triggered events for network, add regularization



*G070044-00-Z* 

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

From Page 6 of G060653-00 (Hayama)

## Waveform Extraction

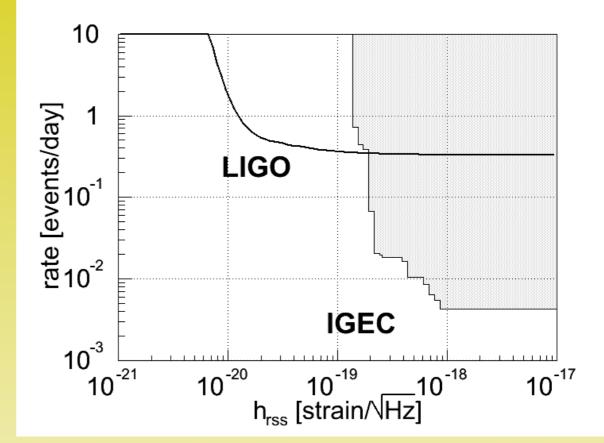
- If GW bursts are detected, we need to extract the waveforms
  - This is built into Coherent WaveBurst for all-sky search
  - Wavelet de-noising being developed for GRB search

To de-noise, wavelet-based waveform estimation method is used (red) Hayama, Fujimoto CQG 23 (2006) S9



*G070044-00-Z* 

LIGO


Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

From Page 10 of G060653 (Hayama)

# Reporting GW Burst Results

- Detector-centric "Rate vs. Strength" says nothing about sources or rate of source events
  - Rate? Event rate in/at detector
  - Strength? Measure of wave amplitude in/at detector
  - "Strength" reveals nothing about, e.g., absolute luminosity



- Better: report rate in population vs. intrinsic energy radiated
- Interpretation astrophysical or otherwise is always in terms of a model
- Model components: population (e.g., galactic), source strain energy spectrum (appropriate for burst searches)
- New observational element: observation schedule (sidereal time associated with data being analyzed: gives "pointing" relative to source population)

G070044-00-Z

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

# Astrophysical Interpretation

#### Source population

- Assume sources trace old stellar population
- •Galactic model with thin disk. thick disk, bulge, bar and halo characteristic of observed white dwarf population

#### •Source model

- Impulsive event involving stellar mass compact object (e.g., supernovae, AIC, etc); axisymmetric source & standard candle amplitude
- •Flat spectral density to 1KHz, 10ms duration

#### •Detector, etc.

- •Virgo, LIGO H1, H2(2Km), L1 with sharp sigmoid efficiency  $(h_{50} \sim 10^{-20} \text{ Hz}^{-1/2})$
- •100% observation schedule

10<sup>0</sup> 10  $10^{-2}$ Efficiency to population Total Thin Disk Thick Disk Bar & Bulge Halo 10<sup>-6</sup>  $10^{-7}$ 10<sup>5</sup> 10-10<sup>-8</sup>  $10^{-6}$ Population Event Rate (1/T<sub>obs</sub>) Energy **10**<sup>4</sup>  $10^{3}$ Excluded Region 10<sup>2</sup> 10  $10^{\circ}$ 

**10<sup>-10</sup>** 

10<sup>-8</sup>

G070044-00-Z

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity

Keith Thorne

10<sup>0</sup>

 $10^{-2}$ 

10<sup>-6</sup> 10<sup>-(</sup> Energy (M<sub>sun</sub>

.10<sup>-4</sup>

From G060672-00 (Finn)



## **Concluding Remarks**

• The larger the network, the better the chances for burst detection

- Better immunity to local transients
- Use full waveform constraints on searches
- Fully-coherent network analyses will be used in S5 results
- LIGO burst searches look forward to our joint work with Virgo
- Even more, we look forward to GW Burst "detection" and the development of Gravitational-Wave Astronomy

G070044-00-Z

Recontres de Moriond 2007 - Gravitational Waves and Experimental Gravity