

Interferometric detectors of Gravitational Waves: a new window to the Universe

Gabriela González

Physics and Astronomy, Louisiana State University
LIGO Scientific Collaboration

Argonne National Laboratory February 9, 2007

Gravitational waves

Resonant systems can measure elastic response to distance distortion: resonant bar detectors.

Gravitational waves are quadrupolar distortions of distances between freely falling masses. They are produced by time-varying mass quadrupoles.

Michelson-type interferometers can detect distance changes in orthogonal directions.

In both cases, what's measured is $\Delta L = hL$

Amplitude of GWs produced by binary neutron star systems in the Virgo cluster

have $h=\Delta L/L\sim 10^{-21}$ and frequencies sweeping up to ~ 1400 Hz.

The LIGO project

 $h=\Delta L/L\sim 10^{-21}$ and $L=4km \Rightarrow \Delta L=hL\sim 10^{-18}$ m!

LIGO Scientific Collaboration

Three LIGO detectors: 4km long in Livingston, LA (L1); 4km and 2km long in Hanford, WA (H1, H2).

GW Detection:

a difficult and fun experiment

QuickTime^{1M} and a Animation decompressor are needed to see this picture.

Interferometer Noise

Design Noise Limits

- > seismic noise at the lowest frequencies
- shot noise at high frequencies
- <u>► thermal noise</u> at intermediate frequencies.
- Based on conservative extrapolation of prototype technologies (circa ~'97)
- •Facility limits designed much lower to allow improvement as detector technology advances

LIGO: Steady progress

Best Strain Sensitivities for the LIGO Interferometers

Binary systems:

a measure of performance

Can translate strain amplitude into (effective) distance

If system is optimally located and oriented, we can see even further: we are surveying hundreds of galaxies!

Electronic logs are public! www.ligo.caltech.edu

Observational Results

www.ligo.org

LSC

Gravitational wave searches: pulsars

Crab pulsar (Chandra Telescope)

- Rotating stars produce GWs *if* they have asymmetries or *if* they wobble.
- *Observed* spindown can be used to set strong indirect upper limits on GWs.
- There are many known pulsars (rotating stars!) that produce GWs in the LIGO frequency band (40 Hz-2 kHz).
 - Targeted searches for 73 known (radio and x-ray) systems in S5: isolated pulsars, binary systems, pulsars in globular clusters...
- There are likely to be many non-pulsar rotating stars producing GWs.
 - All-sky, unbiased searches; wide-area searches.
- GWs (or lack thereof) can be used to measure (or set up upper limits on) the ellipticities of the stars.
- Search for a sine wave, modulated by Earth's motion, and possibly spinning down: easy, but computationally expensive!

Gravitational wave searches: pulsars

frequency (Hz)

"burst" sources (untriggered)

- Search for triple coincident triggers with a wavelet algorithm
- Measure waveform consistency
- Set a threshold for detection for low false alarm probability
- Compare with efficiency for detecting simple waveforms

r-statistic confidence (Γ

- S1: First upper limits from LIGO on gravitational wave bursts, Phys. Rev. D 69, 102001 (2004)
- S2: Upper Limits on Gravitational Wave Bursts in LIGO's Second Science Run, Phys. Rev. D 72, 062001 (2005)
- S2: Upper Limits from the LIGO and TAMA Detectors on the Rate of Gravitational-Wave Bursts, Phys. Rev. D 72, 122004 (2005)
- S3: Search for gravitational wave bursts in LIGO's third science run, Class. Quant. Grav. 23, S29-S39 (2006)
- S4: results completed, paper in progress
- S5 analysis in progress

Triggered Searches for GW Bursts

HETE GRB030329 (~800 Mpc SN): during S2, search resulted in no detection (**PRD** 72, 042002, 2005)

Soft Gamma Repeater 1806-20

- galactic neutron star (10-15 kpc)
 with intense magnetic field (~10¹⁵ G)
- source of record gamma-ray flare on December 27, 2004
- quasi-periodic oscillations found in RHESSI and RXTE x-ray data
- search S4 LIGO data for GW signal associated with quasi-periodic oscillations-- no GW signal found
- * sensitivity: $E_{GW} \sim 10^{-7}$ to 10^{-8} Msun for the 92.5 Hz QPO
- this is the same order of magnitude as the EM energy emitted in the flare

Gamma-Ray Bursts

- search LIGO data surrounding GRB trigger using cross-correlation method
- no GW signal found associated with 39 GRBs in S2, S3, S4 runs
- set limits on GW signal amplitude
- 53 GRB triggers for the first five months of LIGO S5 run
- * typical S5 sensitivity at 250 Hz: SGR 1806-20 Outburst on December 27, 2004 EGW ~ 0.3 M_{sun} at 20 Mpc

Searches for coalescing compact binary signals in S5

binary neutron star

horizon distance: 25 Mpc

Inspiral Horizon distance vs mass

Peak at total mass ~ 25M_{sun}

binary black hole horizon distance

G070029-00-Z

progress

S4 upper limits-compact binary coalescence

- Rate/year/L₁₀ vs. binary total mass
 - $L_{10} = 10^{10} L_{\text{sun,B}}$ (1 Milky Way = 1.7 L_{10})
- Dark region excluded at 90% confidence.

Advanced Interferometer

- » Signal recycling
- » Output mode cleaner
- » 180 W laser (800 kW in arms)
- » 30 kg test masses
- » Quadruple suspensions
- » Active seismic isolation
- » Active thermal correction

Advanced Suspensions

R. Jones, Glasgow U.

- Based on successful GEO triple pendulum design
- Quad pendula for TM, BS;
 Triples for input optics
- Blade springs for vertical isolation
- Indirect damping through upper stage recoil
- Electrostatic or photon drive for fast control at final stage; reaction mass for ES recoil

LIGO detectors: future

• "Neutron Star Binaries:

Initial LIGO: \sim 10-20 Mpc \rightarrow

Advanced LIGO: ~200-350 Mpc

Most likely rate: 1 every 2 days!

Black hole Binaries:

Up to 30 M_o , at ~ 100 Mpc \rightarrow up to 50 M_o , in most of the observable Universe!

x10 better amplitude sensitivity

 \Rightarrow x1000 rate=(reach)³

⇒ 1 year of Initial LIGO < 1 day of Advanced LIGO!</p>

Planned NSF Funding in FY'08 budget (being discussed right now!).

These are exciting times!

- We are taking data at unprecedented sensitivity, and we are searching for gravitational waves.
- We are getting ready for Advanced LIGO.

- We are preparing ourselves for a direct observation of gravitational waves: not if, but when!
- LIGO detectors and their siblings will open a new window to the Universe: what's out there?

Back up slides

Present, future

Stochastic Background: the landscape

Beam Tubes a

Precast concrete enclosure: bulletproof

Hanford

Beam Tube

- 1.2m diam; 3 mm stainless
- special low-hydrogen steel process
- 65 ft spiral weld sections
- 50 km of weld (NO LEAKS!)
- 20,000 m³ @ 10⁻⁸ torr; earth's largest high vacuum system

Vacuum Equipment

Isolation stack in chamber

Core Optic Suspensions

15 kW

(0.2W)

LASER

6W

Core Optics

Core Optic Metrology

LIGO data (1.2 nm rms)

CSIRO data (1.1 nm rms)

 \triangleright Best mirrors are $\lambda/6000$ over the central 8 cm diameter

Thermal Compensation System

- Cold power recycling cavity is unstable: poor buildup and mode shape for the RF sidebands
- Require 10's of mW absorbed by 1µm beam

http://www.einsteinathome.org/

- GEO-600 Hannover
- LIGO Hanford
- LIGO Livingston
- Current search point
- Current search coordinates
- Known pulsars
- Known supernovae remnants

Worldwide Network:

- GEO and LIGO detectors' data analyzed by LSC
- We have coordinated observations and shared data with TAMA
- We just finalized agreements with VIRGO
- AIGO is still in planning stage; AIGO personnel currently share in LIGO operation

Gravitational Wave sources: Stochastic Background

NASA, WMAP

- A primordial GW stochastic background is a prediction from most cosmological theories.
- Given an energy density spectrum $\Omega_{\rm w}(f)$, there is a strain power spectrum:

$$\Omega_{GW}(f) = rac{1}{
ho_c} rac{d
ho_{GW}(f)}{d\ln f}$$

$$S_{\rm gw}(f) = \frac{3H_0^2}{10\pi^2} f^{-3}\Omega_{\rm gw}(f)$$

$$h(f) = S_{\text{gw}}^{1/2}(f) = 5.6 \times 10^{-22} h_{100} \sqrt{\Omega_0} \left(\frac{100 \text{Hz}}{f}\right)^{3/2} \text{Hz}^{1/2}$$

Gravitational Wave sources: Stochastic Background

- Cross-correlate signals between 2 interferometers
- LIGO S1: Ω_{GW} < 44 PRD 69 122004 (2004)

$$H_0 = 72 \text{ km/s/Mpc}$$

- LIGO S3: $\Omega_{GW} < 8.4 \times 10^{-4}$ PRL 95 221101 (2005)
- LIGO S4: $\Omega_{GW} < 6.5 \times 10^{-5}$ (new upper limit; accepted for publication in ApJ)
 - Bandwidth: 51-150 Hz;
- Initial LIGO, 1 yr data

 Expected sensitivity ~ 4x10⁻⁶

 upper limit from Big Bang nucleosynthesis 10⁻⁵; interesting scientific territory
- Advanced LIGO, 1 yr data Expected Sensitivity ~1x10⁻⁹

Cosmic strings (?) $\sim 10^{-8}$ Inflation prediction $\sim 10^{-14}$

Collaborating Institutions

MARYLAND

COLUMBIA UNIVERSITY

Einstein's gravitation

When masses move, they wrinkle the space time fabric, making other masses move...

The theory predicts gravitational waves traveling away from moving masses.

Search for binary systems

- Use two or more detectors: search for double or triple *coincident* "triggers"
- Can infer masses and "effective" distance.
- Estimate false alarm probability of resulting candidates: detection?
- Compare with expected efficiency of detection and surveyed galaxies: upper limit

John Rowe, CSIRO

B. Abbott et al. (LIGO Scientific Collaboration):

- S1: Analysis of LIGO data for gravitational waves from binary neutron stars, Phys. Rev. D 69, 122001 (2004)
- S2: Search for gravitational waves from primordial black hole binary coalescences in the galactic halo, Phys. Rev. D 72, 082002 (2005)
- S2: Search for gravitational waves from galactic and extra-galactic binary neutron stars, Phys. Rev. D 72, 082001 (2005)
- S2: Search for gravitational waves from binary black hole inspirals in LIGO data, Phys. Rev. D 73, 062001 (2006)
- S2: Joint Search for Gravitational Waves from Inspiralling Neutron Star Binaries in LIGO and TAMA300 data (LIGO, TAMA collaborations), PRD, in press
- S3, S4: finished searched for BNS, BBH, PBBH: no detection; paper in progress
- S5: analysis in progress

When will we see something?

LSC

Predictions are difficult... many unknowns!

- Rotating stars: how lumpy are they?
- Supernovae, gamma ray bursts: how strong are the waves (and what do they look like)?

- Cosmological background: how did the Universe evolve?
- Binary black holes: how many are there?What masses do they have?
- Binary neutron stars: from observed systems in our galaxy, predictions are up to 1/3yrs, but most likely one per 30 years, at LIGO's present sensitivity.
- From rate of short GRBs, much more optimistic predictions for BNS and BBH rates?□ Ready to be tested with S5!

Space interferometer: LISA

GW LIGO detectors: interferometers

QuickTime™ and a Animation decompressor are needed to see this picture

suspended test masses ("freely falling objects")

dark port (RF heterodyne modulation)

