

# LIGO Laser Interferometer Gravitational Wave Observatory

Briefing for PMA Visiting Committee

LIGO-G070008-00-A

Jay Marx January 31, 2007

1



# LIGO's mission

- Directly detect the gravitational waves predicted by General Relativity
- Pioneer the new field of gravitational wave astrophysics and astronomy





Hanford, Washington 4 km & 2 km interferometers

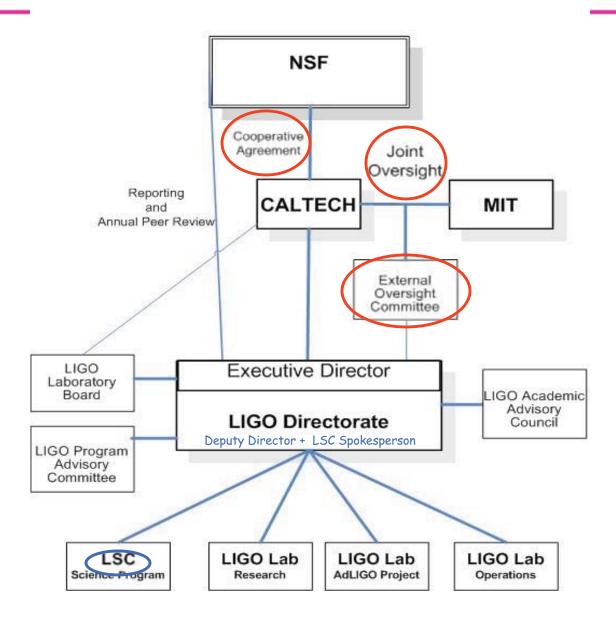
LIGO-G070008-00-A

Livingston Louisiana 4 km interferometer



### • LIGO = LIGO Laboratory + the LIGO Scientific Collaboration

#### LIGO Laboratory


- » ~180 people, headquartered at Caltech with observatories in Louisiana and Washington State & a group at MIT
- » Annual operating budget ~\$33M
- » Operates the observatories, does R&D, analyses data and publishes science results, manages and executes LIGO projects

#### LIGO Scientific Collaboration

- » ~500 scientists from 45 institutions (including Caltech)
- » With LIGO Lab, does R&D, analyses data and publishes science results
- » LSC has been integrated into the LIGO Lab management structure



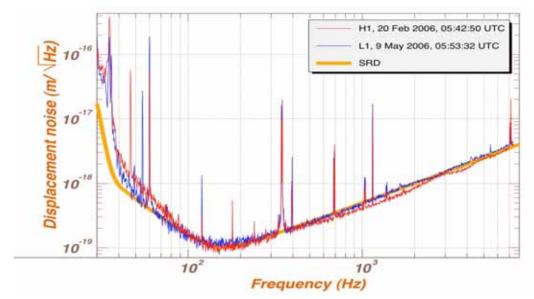
## LIGO Organization





- Since start of construction start in 1995: \$490M
- Expected funding FY08-FY15: \$480M<sup>1</sup>

(operations under new Cooperative Agreement and Advanced LIGO construction)


1--Commitments will be formalized by Cooperative Agreements with Caltech in place during the next year

# **LIGO** The challenge of measuring gravitational waves

 Gravitational waves from even the strongest sources are very weak when they reach earth (strain ~ 10<sup>-22</sup>)

LIGO must be sensitive to differential change in arm length of ~  $10^{-18}$  m

- (1/1000 the size of a proton) over 4 km!!!
- Like measuring distance to nearby stars with accuracy of a hair's width
- After 5 years of intense effort to reduce noise by ~ 3 orders of magnitude, LIGO's design sensitivity was reached in 2005--a great achievement

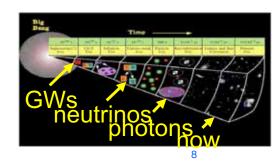


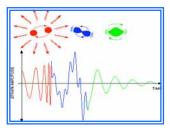
**LIGO** Current search for gravitational waves with LIGO

• A gravitational wave search *at design sensitivity* began in November 2005; continue into fall 2007

• Searching for signals in audio band (~50 Hz to few kHz) from

- inspiraling neutron star and black hole pairs,
- collapsing supernovae,
- pulsars,
- stochastic sources including the big bang,
- the unknown.
- How far can we "see?"--


• Range for "golden" source --inspiraling pair of 1.4  $M_o$  neutron stars-- is now ~50 million light-years




Sample of recent science results from LIGO

- No GW observed yet--data from current run sets some interesting limits
- Binary neutron stars or black holes coalescing
  - » In Milky Way sized galaxy
    - for 1.4 M<sub>o</sub> NS-NS happens less often than once every 50 years
    - for 5.0  $M_0$  BH-BH happens less often than once every 250 years
- **Pulsars--**Look for GW signal from ~100 known pulsars
  - » Limits on pulsar ellipticity ~  $10^{-6}$  (1 cm bump on 10 km size object)
  - » For Crab pulsar determine that < 60% of energy lost in spindown goes into GWs</p>
- **GWs from the Big Bang** (data from previous run)
  - Fraction of the energy density in the universe in GW (in 50-150Hz frequency band) is less than 65 parts per million

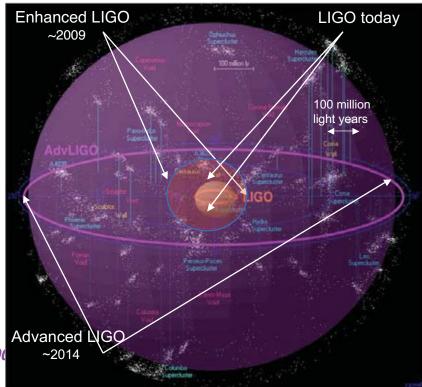
LIGO-G070008-00-A










## The scientific evolution of LIGO

- **Current science run** is ~65% complete
  - » Hundreds of galaxies now in range
  - » No discovery yet--possible but not highly probable
- Enhancement program (~2x sensitivity; 8x volume of universe)
  - » Lead by Rana Adhikari, new Caltech Asst. Professor
  - » In 2009 ~8 times more galaxies in range; discovery probability-moderate

### Advanced LIGO project

- (~10x sensitivity; 1000x volume of universe)
  - » ~\$205M from NSF + overseas contributions
  - » Construction start expected in FY08
  - » 1000 times more galaxies in range
  - » Expect ~1 signal/day or /week in ~2014
  - Will usher in era of gravitational wave astrophysics

LIGO-G070008-0(





## LIGO at Caltech--people, space & computing

- **People--** Healthy balance between faculty, staff, students, postdocs
  - » ~60 Caltech employees and 28 contractors
    - includes 10 postdocs
    - $\sim 10$  grad students and  $\sim 20$  summer students (SURF and REU)
  - » 6 members of professorial faculty and 3 members of research faculty are involved with LIGO
- **Space**-- significant issue with solution a few years away
  - » Staff currently in 4 different buildings on campus- a serious efficiency problem
    - Will be resolved when Cahill Center frees space in Bridge Laboratory
    - Commitment from PMA to consolidate in Bridge ~early 2009
- **Computing** will need more space and infrastructure
  - » Advanced LIGO will increase need for data analysis computational capabilities
  - » Will need more space on campus for computers and increased power and cooling
    - Working with appropriate Caltech officials to resolve

LIGO-G070008-00-A



- LIGO is the world-leading program in Gravitational Wave science-- Caltech led and nurtured
- The current science run at design sensitivity is going very well & science results are being published
- With Enhanced and then Advanced LIGO, LIGO will observe GW and then pioneer the new field of GW astronomy
- A coordinated international network is evolving under LIGO's leadership
  - » Agreement for data sharing & coordinated operations with Virgo (French/Italian funded GW observatory near Pisa) just approved