Initial and Advanced LIGO Status

March 24, 2006 9th Eastern Gravity Meeting

G060669-00-R

LIGO and Gravitational Waves

- Gravitational waves predicted by Einstein
- Accelerating masses create ripples in space-time
- Need astronomical sized masses moving near speed of light to get detectable effect

Limiting Noise Sources

Seismic noise at low frequencies (<40 Hz) Optics hang as pendula Vibration isolation between optics and outside

Thermal noise in intermediate frequency range (40 Hz - 200 Hz)

k_B T energy in wire suspension

Shot noise at high frequency (> 200 Hz)

10 W laser Optical cavities in arms Power recycling

Sensitivity enough so detection of events possible, but perhaps not probable (?)

Current LIGO Noise

Present noise at design value in all three interferometers

- Some excess noise < 50 Hz</p>
- Noise reduction during breaks

Currently taking data

LIGO

- Will collect 1 years worth of triple coincidence
- Began in November 2005
- Extensive data analysis ongoing

Hanford 4 K sensitivity

- Neutron star inspirals 14.5 Mpc
- 10 M_o black hole inspirals to 50 Mpc
- Stochastic background 7.5 10⁻⁶
- Crab pulsar ε 2.8 10⁻⁵
- Sco X-1 ε 3.0 10⁻⁷

LIGO Advanced LIGO Overview

- LIGO infrastructure designed for a progression of instruments

 Nominal 30 year lifetime
- All subsystems to be replaced and upgraded
 - More powerful laser
 - Larger core optics

 Image: Control of the state of the

More aggressive seismic isolation

- Quantum noise limited in much of band
- Signal recycling mirror for tuned response
- Thermal noise in most sensitive region
- About factor of 10 better sensitivity
- Expected sensitivity
 - Neutron star inspirals to about 175 Mpc
 - 10 M_o black hole inspirals to 775 Mpc
 - Stochastic background 1 10-9
 - Crab pulsar ε 8.5 10⁻⁷
 - **Sco X-1** ε 5.3 10⁻⁸

Laser and Optics

180 W end-pumped Nd:YAG rod
injection locked needed
Backup efforts in slabs & fiber lasers
Frequency stabilization
10 Hz/Hz^{1/2} at 10 Hz required
Development at Max-Planck Hannover, Laser Zentrum Hannover

LIGO

Silica chosen as substrate material

- Improved thermal noise performance from original anticipation
- Some concerns about unknowns with sapphire (absorption, construction,...)

Coatings dominate thermal noise & optical absorption

- See talk by Matt Abernathy

Seismic Isolation and Suspensions

Active isolation in large chambers

- High-gain servo systems, two stages of 6 degree-of-freedom each
- External hydraulic actuator pre-isolator
- Extensive tuning of system after installation
- Hydraulic pre-isolator installed at Livingston
 - Increases initial LIGO duty cycle
 - Exceeds advanced LIGO requirements

LIGO

Adopt GEO 600 silica suspension design

- Multi-stage suspension, final stage fused silica
- Ribbons baseline design, fibers as fallback

Quadruple pendulum design chosen

- Ribbons silicate bonded to test mass
- Leaf springs (VIRGO origin) for vertical compliance
 Laser fiber/ribbon drawing apparatus
 developed
 - Welds being characterized for strength/Q etc.

Readout

Dual recycled (signal & power) Michelson with Fabry-Perot arms

- Offers flexibility in instrument response
- Can provide narrowband sensitivity
- Critical advantage: can distribute optical power in interferometer as desired
- Output mode cleaner

DC rather than RF sensing

- Offset ~ 1 pm at interferometer dark fringe
- Best signal-to-noise ratio
 - Simplifies laser, photodetection requirements
 - Perfect overlap between signal & local oscillator
 - Easier to upgrade to quantum nondemolition in future

Advanced LIGO Project Status

- National Science Board (NSB) endorsed Advanced LIGO proposal in October 2004
 - Contingent upon integrated year of observation with Initial LIGO
- National Science Foundation & Presidential Budget for 2006 includes Advanced LIGO
 - One of 3 new projects to start in next 3 years
 - October 2007 start date
- Shut down first initial LIGO interferometer mid 2010
 - Finish installing 3rd interferometer end 2013

NSF review of costs, manpower & schedule in June 2006

- Fresh analysis→updates of technology
- Current best estimates comparable with NSB-approved costs

Conclusions

- Initial LIGO working as designed
 - > Upper limits on gravitational wave sources
 - >Working towards a confirmed detection
- Advanced LIGO will have ~ 10 X sensitivity of initial LIGO
 - > 1000 X rate for homogeneously distributed sources
 - Detection of events probable
- Laser will have 180 W of power
- Fused silica substrates for core optics
 - Coating crucial and still under development
- Fused silica ribbon suspensions
- More aggressive seismic isolation
- DC readout of dual-recycled configuration
- Budget situation hopeful for 2007 start
 - No check in hand yet