Optimal parameter-space covering for continuous-wave searches

Reinhard Prix

Albert-Einstein-Institut, Potsdam

GWDAW11@Potsdam Dec 19, 2006

LIGO-G060655-00-Z R. Prix Optimal Covering for CW searches

Matched filtering: parameter-space covering

Templates parametrized by $\lambda \equiv \{\lambda_1, \lambda_2, ..., \lambda_n\} \in \mathbb{P}_n$ Detection statistic: $\mathcal{F}(\lambda)$.

"Distance" $m \equiv \frac{E[\mathcal{F}(\lambda_s) - \mathcal{F}(\lambda)]}{E[\mathcal{F}(\lambda_s)]} = g_{ij}(\lambda_s) \Delta \lambda^i \Delta \lambda^j + \mathcal{O}(\Delta \lambda^3)$

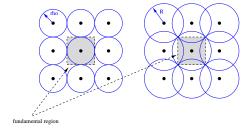
Optimal template bank:

• Set of "templates" $\lambda_{(i)}$ such that for ANY point $\lambda \in \mathbb{P}_n$, the mismatch *m* to the *nearest* template satisfies $m \le m_{\text{max}}$. \implies spheres of "covering radius" $R = \sqrt{m_{\text{max}}}$.

• Find the covering $\{\lambda_{(i)}\}$ with the smallest number of templates \implies "sphere covering problem" ('dual' of sphere-packing problem!)

Sphere "Packing" versus "Covering"

Conway, Sloane, Sphere packings, lattices and groups (1998)



Packing density: $\Delta \equiv \frac{\text{Volume of sphere}}{\text{fundamental volume}} < 1$ fraction of space occupied by spheres

Covering thickness: $\Theta \equiv \frac{\text{Volume of sphere}}{\text{fundamental volume}} > 1$ we average number of spheres covering a point

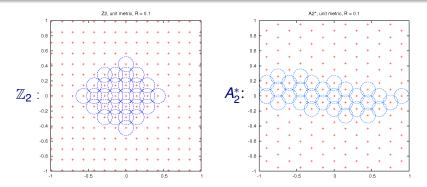
Packing problem: given ρ , maximize density Δ Covering problem: given *R*, mimimize thickness Θ

What is know about (Euklidean) Covering?

n	lattice	Θ	alt.	Θ
2	A [*] ₂ (hexagonal)	1.21		
3	A ₃ * (bcc)	1.46		
4	A ₄ *	1.77		
5	A_5^*	2.12		
6	L ^{c1} L ^c ₇	2.46	A_6^*	2.55
7	L ^c ₇	2.90	A_7^*	3.06
8	L_8^c	3.14	A*8	3.67
9	L ^c ₈ L ^c ₉	4.27	A_9^*	4.39

- Today L_n^c best covering known for up to n = 15
- Generally A_n^* (previous record-holder) not much thicker than the best currently known lattice.

Advantage of A_n^* covering over \mathbb{Z}^n



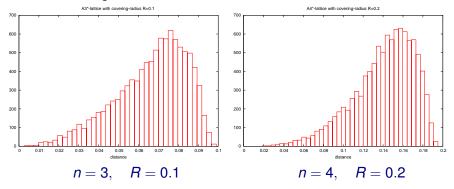
"gain" of A_n^* with respect to \mathbb{Z}_n : $\kappa(n) = \frac{\Theta(\mathbb{Z}_n)}{\Theta(A_n^*)} \sim e^n$

					11	
<i>κ</i> (<i>n</i>)	1.30	1.86	2.80	4.33	78.23	1691.6

Monte Carlo - check of covering-radius

 A_n^* lattice covering implemented in LALLatticeCovering()

- generate A_n^* lattice for given covering radius $R = \sqrt{m_{\text{max}}}$
- pick random points and determine their minimal match m
 histogram m



LIGO-G060655-00-Z

Flat metric approximation

We need explicitly flat metric to use lattice covering, but the continuous-wave metric g_{ij} in $\lambda^i = (\alpha, \delta, f, \dot{f}, ...)$ is curved.

- Approx. I: "phase metric": $g_{ij} \sim g_{ij}^{\phi} = \langle \partial_i \phi \, \partial_j \phi \rangle \langle \partial_i \phi \rangle \langle \partial_j \phi \rangle$ $\phi(t) = 2\pi \left[f\left(t + \frac{r(t) \cdot n}{c} \right) + \frac{1}{2} \frac{\dot{f}}{f} \left(t + \frac{r(t) \cdot n}{c} \right)^2 + \dots \right]$
- Approx. II: "JKS simplified phase": (linear Roemer delay) $\phi(t) \approx 2\pi \left[\frac{f}{t} t + \frac{1}{2} \frac{\dot{f}}{t} t^2 + ... + \frac{r(t) \cdot n}{c} \frac{f(t)}{c} \right]$
- Approx. III: "Orbital metric": neglect $r_{spin}(t)$: (true for LISA) $\phi_{orb}(t) \approx 2\pi \left[f t + \frac{1}{2}\dot{f} t^2 + ... + \frac{r_{orb}(t)\cdot n}{c} f(t) \right]$

 \square g_{ij}^{orb} can be shown to be flat!

Plans

- Improve LatticeCovering() to generate lattice "point-by-point" instead of "all-at-once"
- Use flat-metric approximation to build A^{*}_n covering for continuous-wave searches (LIGO and LISA)
- Test this by Monte-Carlo injection and signal recovery
- Alternative approach [with X. Siemens]: use (strong) degeneracy of orbital metric to reduce the "effective dimensionality" of the parameter space