Search for gravitational-wave bursts associated with gamma-ray bursts using the LIGO detectors

Soumya D. Mohanty
On behalf of the LIGO Scientific Collaboration
University of Texas at Brownsville
LIGO G060652-00-Z

Gamma Ray Bursts

- Transient Gamma Ray/high energy X-ray events
- Long-soft bursts (LSB): Stellar core collapse to Black Holes
 - or core collapse to magnetars for anomalously long and soft bursts, e.g., 060218, 1998bw (980425)
- Short hard bursts (SHB): NS-NS, NS-BH, BH-WD mergers following GW driven inspiral
- Central engine: Black Hole with an accretion disc
 → relativistic jets → shocks → γ-rays
- Both classes are exciting GW sources! But ...
- Distance scales:
 - LSB should follow massive Star Formation Rate ⇒ pdf of observed redshifts peaks at z > 1 (zpeak ~ 2 likely)
 - SHB pdf should peak at lower redshifts (zpeak~ 0.5) but still far away
 - Beaming of gamma rays implies a larger rate of unobserved nearby events – may show up at lower energies that are not yet monitored
- We may get lucky! (1998bw occurred at 35 Mpc)

Outline of the analysis

- Search for short-duration gravitational-wave bursts (GWBs) coincident with GRBs using S2, S3 and S4 data from LIGO
 - Models exist that predict long duration (~ 10 sec) signals (Van Putten et al) but not targeted in this analysis
- Two search modes: (a) GWB associated with each GRB (b) collective GW signature of a set of GRBs
- Constraints → (a) Upper limits on h_{rss} and (b) constraint on population parameters
- The search makes no prior assumptions about waveforms of the GW signals except their maximum duration and bandwidth
 - Analysis based on pairwise crosscorrelation of two interferometers
 - Target GWB durations: ~1 ms to ~100 ms
 - Target bandwidth: 40 Hz to 2000 Hz

The GRB sample for LIGO S2/S3/S4 runs

- S2: 28 GRBs with at least double coincidence LIGO data
 - 24 for LHO 4km LHO 2km
 - 9 for LHO 4km LLO 4km
 - 9 for LHO 2km LLO 4km
- S3: 7 GRBs with at least double coincidence LIGO data
 - 7 for LHO 4km LHO 2km
 - 0 for LHO 4km LLO 4km
 - 0 for LHO 2km LLO 4km
- S4: 4 GRBs with at least double coincidence LIGO data
 - 4 for LHO 4km LHO 2km
 - 3 for LHO 4km LLO 4km
 - 3 for LHO 2km LLO 4km

59 LIGO on-source pairs analyzed

- Only well-localized GRBs considered for LHO LLO search
- Only H1-H2 cross-correlation used for population constraints
- Standard data quality cuts such as science mode, high rate of seismic transients

IPN, HETE-2, INTEGRAL, Konus-Wind (pre-Swift)

> start of Swift era

Detection Statistic: single GRB search

Significance of test statistic using off-source data

- Apply search to off-source segments to obtain distribution of test statistic
- ❖Use time shifts to get large sample size for the distribution estimation
- ❖Test statistic value found in onsource search indicated by black arrow
- **❖Significance: Fraction of off-**source values greater than the onsource value
- ❖Large significance means onsource data is consistent with no signal hypothesis

Testing the significance of the entire sample

- Some small significance values but also large number of trials (59 values)
- Expected distribution of significance under null hypothesis is uniform from 0 to 1
- Are the observed significances consistent with random drawings from a uniform pdf?
- Which is the most anomalous value?
 Binomial test
- Find the probability of obtaining N–k values that are smaller than the kth smallest value
- Find the lowest such probability among the points in the tail of the sample (smallest 25% of the observed significances)

Maximum Likelihood Ratio approach

- Unknown GW signal waveform and unknown delay
 - Assume a maximum duration and bandwidth for the signals
- Stationary, Gaussian noise and two identical detectors
- At present: no prior knowledge of GRB redshift or other characteristics used (work for the future)
- We can obtain the Maximum Likelihood Ratio statistic
 - Maximum of the likelihood of the total data collected over N GRBs
 - Parameters of the likelihood to be maximized over are the set of
 - N unknown offsets and
 - N unknown waveforms
 - Analytic derivation of the maximum possible under the above simplifications
- Test statistic: Simply the average, over the N GRBs, of the single GRB test statistic
 - Caveat: not the correlation coefficient as used here but including non-stationarity may result in the same
- Non-parametric version: Two sample Wilcoxon rank-sum test on the on-source and off-source samples of test statistic values

Results of search (Preliminary)

- binomial test
 - 25 ms search: binomial probability 0.153, significance 0.48
 - 100 ms search: binomial probability 0.207, significance 0.58
- rank-sum test (only H1,H2): significance 0.64

Result of tests: Null hypothesis cannot be rejected. No GW signal seen from both statistical searches.

h_{rss} 90% upper limits for sine-gaussians (preliminary)

-19.5

-19

-18.5

log10(hrss)

-18

- Inject simulated sine-gaussians into data to estimate single GRB search sensitivity
- Use linear and circular polarizations
- Take into account antenna response of interferometers
- The h_{rss} upper limits can be turned into astrophysical quantities for various source models
- **Example:** Isotropic emission of 1 $M_e c^2$ in the source frame \rightarrow 27 Mpc for the best h_{rss} limit in the plot

Constraining population parameters (preliminary results)

- Maximum Likelihood Ratio test statistic(χ): average of individual GRB test statistic (H1,H2 only)
- PDF depends only on the matched filtering signal to noise ratio ρ of the GW signal in the detectors
- Use an astrophysical model of observed z distribution
- Redshifts from afterglows may not be good indicators of the z distribution of S2, S3, S4 GRBs
- ρ at peak redshift = ρ_0
- Construct frequentist confidence belt s
 in ρ₀, χ plane
- $\mathbf{z}_{\text{peak}} = 1.8 \rightarrow \mathsf{E}_{\text{gw}} \le 3 \times 10^4 \, \mathsf{M}_{\odot} \mathsf{c}^2$
- ♣ Hypothetical (same z values as current sample but H1,L1 and optimal locations) : ≈ 10 better

- •z pdf : Bromm, Loeb, ApJ, 2002
- Standard candles in GWs

- •ρ: snr w.r.t 4km Science Requirement Document sensitivity
- •Isotropic emission of GWs, detected frequency 200 Hz

The GRB sample for LIGO S5 run

129 GRB triggers in LIGO S5 run (as of Nov 27, 2006)

- most from Swift
- 40% triple-IFO coincidence
- 68% double-IFO coincidence
- 9 short-duration GRBs
- 35 GRBs with redshift
 - \star z = 6.6, farthest
 - z = 0.0331, nearest

GW burst search on this sample using the same pipeline is in progress

Summary and Prospects

- Analysis pipelines for single and statistical GRB triggered searches for short GWBs
- Results obtained with S2, S3, S4 GRBs: Hypotheses tests and upper limits (single and population)
- Prospects for S5:
 - Significant improvement in noise level over S2, S3, and S4
 - Much larger GRB sample ⇒ possibility of making cuts on the GRB triggers
 - Subset of close GRBs; LSBs v/s SHBs; optimally located
- Further significant improvements in base sensitivity possible with the use of fully coherent burst search methods (in progress)