The Multi-IFO Hough Search using LIGO S4 Data

Badri Krishnan (For the LIGO Scientific Collaboration)

Max Planck Institut für Gravitationsphysik Albert Einstein Institut, Germany

11th Gravitational Wave Data Analysis Workshop Potsdam, December 2006

- Summary of S2 Results
- 4 The S4 Hough Search

イロト イポト イヨト イヨト

Rapidly rotating and non-axisymmetric isolated Neutron stars are the most promising sources for long-lived periodic gravitational wave signals. Possible mechanisms for GW emission:

- Deformation of the crust due to elastic stresses or magnetic fields
- Unstable fluid oscillation modes (the r-modes)
- Free precession of the whole star

< ロ > < 同 > < 三 >

The Waveform

In the rest frame of the star, the signal is a slowly varying sinusoid with a quadrupole pattern:

$$h_{+}(t) = A_{+} \cos \Phi(t) \qquad h_{\times}(t) = A_{\times} \sin \Phi(t)$$
$$A_{+} = h_{0} \frac{1 + \cos^{2} \iota}{2} \qquad A_{\times} = h_{0} \cos \iota$$
$$h_{0} = \frac{16\pi^{2}G}{c^{4}} \frac{l\epsilon f_{r}^{2}}{d}$$

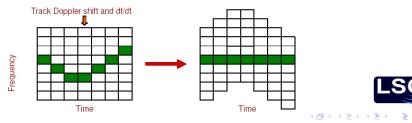
- ι: pulsar orientation w.r.t line of sight
- ε: equatorial ellipticity
- fr: rotation frequency
- d: distance to star

The Waveform

The received signal is amplitude modulated due to the detector antenna pattern

$$h(t) = F_{+}(t; \alpha, \delta, \psi)h_{+}(t) + F_{\times}(t; \alpha, \delta, \psi)h_{\times}(t)$$
(1)

and the frequency is also Doppler modulated


$$f(t) - \hat{f}(t) = \hat{f}(t) \frac{\mathbf{v}(t) \cdot \mathbf{n}}{c} \,. \tag{2}$$

< ロ > < 同 > < 三 >

The Doppler modulation allows us to locate the pulsar in the sky but it is also responsible for the computational cost – each sky location has to be demodulated separately.

Semicoherent Searches

- Fully coherent searches are computationally expensive analysis of, say, 1 year of data is not possible with these methods alone
- Semi-coherent methods are computationally efficient but less sensitive for a given observation time
- These methods combine short segments of Fourier transformed data (SFTs)

Badri Krishnan(For the LIGO Scientific Collaboration)

Semicoherent Searches

- Three methods are used currently within the LSC
 - Stackslide sums normalized SFT power

$$\rho = \sum_{i=1}^{N} |\tilde{x}_k^{(i)}|^2$$

Power-Flux sums weighted SFT power

$$\rho = \sum_{i=1}^{N} w_i |\tilde{x}_k^{(i)}|^2$$

Hough sums weighted binary counts

$$n = \sum_{i=1}^{N} w_i n_k^{(i)} \text{ where } n_k^{(i)} = \begin{cases} 1 & \text{if } |\tilde{x}_k^{(i)}|^2 \ge \rho \\ 0 & \text{if } |\tilde{x}_k^{(i)}|^2 < \rho \end{cases}$$

Semicoherent Searches

- The three methods have different advantages
 - Powerflux is the most sensitive
 - Hough is more robust and computationally efficient
 - Stackslide is the simplest and also does quite well on sensitivity and cost
- The weights are (optimally) proportional to the SNR of a signal in the different SFTs. For Hough, the weights are:

$$w_i \propto rac{F_+^2(t_i)+F_ imes^2(t_i)}{S_n^{(i)}(t)}$$

• Weights normalized so that $n \in [0, N]$:

$$\sum_{i=1}^{N} w_i = N$$

< ロ > < 同 > < 三 >

Sensitivity

- Hough weights suggested by Palomba et al (GWDAW 9)
- Improvement in sensitivity due to weights is important when non-stationarities in SNR are large
- For a given false dismissal rate β, weakest signal that can cross a threshold corresponding to a false alarm rate α is

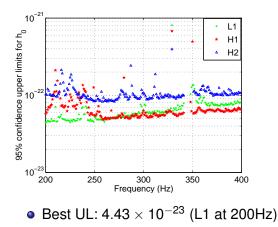
$$h_0 = 3.38 \mathcal{S}^{1/2} \left(\frac{||\vec{w}||}{\vec{w} \cdot \vec{X}}\right)^{1/2} \sqrt{\frac{S_n^{(eff)}}{T_{sft}}}$$

where

$$X_i = S_n^{(eff)} rac{F_+^2(t_i) + F_ imes^2(t_i)}{S_n^{(i)}(f)}$$

and

$$S = \operatorname{erfc}^{-1}(2\alpha) + \operatorname{erfc}^{-1}(2\beta)$$


The S2 Search

- All sky search, 200-400 Hz, 11 spindowns including 0 with $\delta \dot{f} = 1.1 \times 10^{-10}$ Hz/s.
- No weights used: $n = \sum n_i$.
- L1, H1 and H2 analyzed separately using 1800s SFTs
- No signal detected
- Population based frequentist upper limit set by Monte-Carlo signal injections using loudest event in 1Hz bands
- Known spectral lines consistently avoided while finding loudest events and also during signal injections
- Phys. Rev. D 72, 102004 (2005)

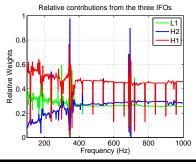
ヘロト ヘアト ヘヨト

The S2 Hough Upper-Limits

Parameter Space for the S4 Search

- Weights allow us to use SFTs from all three IFOs together
- Sensitivity increases by \sim 10% due to weights
- 899 SFTs from L1, 1004 from H1, and 1063 from H2
- Frequency band is 50-1000 Hz
- All sky search
- Sky is broken up into 92 patches each \sim 0.4 rad wide
- 10 spindown parameters analysed with resolution $\delta \dot{f} = (T_{obs}T_{sft})^{-1} \approx 2.2 \times 10^{-10} \text{ Hz}$
- All-sky upper limits set in 0.25 Hz bands based on loudest event

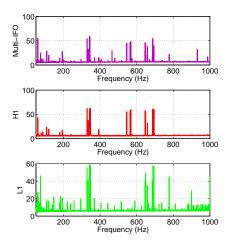
ヘロト ヘアト ヘヨト ヘ


- Size of skypatch is limited because weights are not valid for entire sky
- Size of each skypatch depends on angular variation of $F_{+,\times}$
- Sky broken up into 92 patches, each \sim 0.4rad \times 0.4rad.
- For this choise of skypatch size, mismatch between sky-position where weights are calculated and where signal is injected can lead to loss of \sim 5% in SNR

Contribution of the Different IFOs

 Look at the quantity fractional noise weight contribution of each IFO, for example

$$\frac{\sum_{H1} w_i}{\sum_{H1} w_i + \sum_{L1} w_i + \sum_{H2} w_i}$$



It is worthwhile to include H2 in multi-IFO search, especially at high frequencies. H1 always contributes most.

< < >> < </>

Badri Krishnan(For the LIGO Scientific Collaboration)

Most Significant Events in 0.25 Hz bands – Preliminary

Badri Krishnan(For the LIGO Scientific Collaboration)

Following up the outliers

- Set a significance threshold of 7 in multi-IFO results
- For every candidate, look for coincident events in L1 and H1 with threshold 6.6
- Exclude 60Hz harmonics and violin modes
- 7 events survive these criteria
- Further follow-ups of these 7 candidates shows them not to be of astrophysical origin
- Aim to perform a coherent *F*-statistic follow-up in future searches

< ロ > < 同 > < 三 >

Following up the outliers

	Hough significance								
	Band (Hz)	Multi-IFO	H1	L1	Comment				
1	78.602-78.631	12.466	12.023	10.953	Inst. Lines				
2	108.850-108.875	29.006	23.528	16.090	Inj. Pulsar3				
3	130.402-130.407	7.146	6.637	6.989	?				
4	193.92-193.96	27.911	17.327	20.890	Inj. Pulsar8				
5	575.15-575.23	13.584	9.620	10.097	Inj. Pulsar2				
6	721.45-721.50	8.560	6.821	13.647	L1 Inst. Lines				
7	988.80-988.95	7.873	8.322	7.475	Inst. Lines				

<ロト <回 > < 注 > < 注 > 、

Following up the outliers

Parameters of the outlier at 130.4 Hz

Detector	S	<i>f</i> ₀ (Hz)	<i>df/dt</i> (Hz/s)	lpha (rad)	δ (rad)
Multi-IFO	7.146	130.4028	$-1.745 imes 10^{-9}$	0.8798	-1.2385
H1	6.622	130.4039	$-1.334 imes 10^{-9}$	2.1889	0.7797
H1	6.637	130.4050	$-1.334 imes10^{-9}$	2.0556	0.6115
L1	6.989	130.4067	$-1.963 imes 10^{-9}$	1.1690	-1.0104

Candidate does not pass coincidence test in sky-location

< ロ > < 同 > < 三 > .

Preliminary Upper Limits

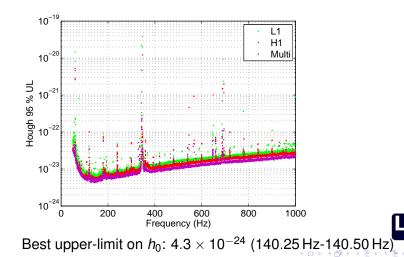
Hough ULs are predicted by

$$h_0^{95\%} = 11.0 \mathcal{S}^{1/2} \sqrt{\frac{S_n^{(eff)}}{T_{sft}}}$$

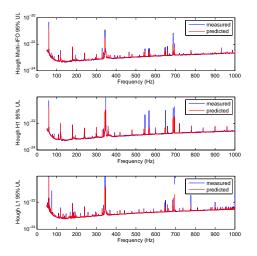
where

$$S_n^{(eff)} = \left(\sum_{i=0}^N \frac{1}{\left(S_n^{(i)}\right)^2}\right)^{-1/2}$$

and


$$\mathcal{S} = \operatorname{erfc}^{-1}(2\alpha) + \operatorname{erfc}^{-1}(2\beta)$$

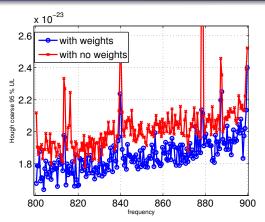
E 990


ヘロア 人間 アメヨア 人口 ア

Preliminary Hough S4 Upper Limits

Badri Krishnan(For the LIGO Scientific Collaboration) LIGO-G060651-00-Z

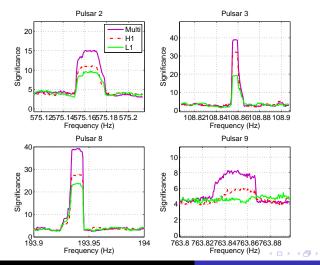
Preliminary Hough S4 Upper Limits


▲ 臣 ▶ ▲ 臣

Badri Krishnan(For the LIGO Scientific Collaboration)

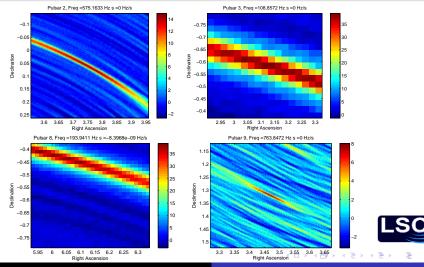
LIGO-G060651-00-Z

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


Improvements Due to the Weights – Preliminary

Average improvement by using weights in this band is 9.2 multi-IFO case (but only \sim 6% for single IFO)

Badri Krishnan(For the LIGO Scientific Collaboration) LIGO-G060651-00-Z

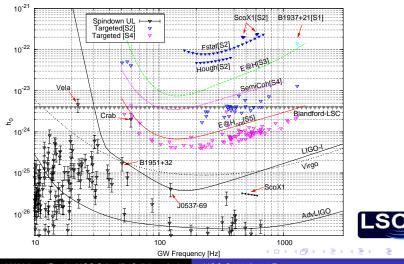

Hardware Injections – Preliminary

Badri Krishnan(For the LIGO Scientific Collaboration)

Hardware Injections – Preliminary

Badri Krishnan(For the LIGO Scientific Collaboration)

Where we are going


Wide parameter space searches:

- We aim to carry out a multi-IFO Hierarchical search consisting of Hough on *F*-statistic segments to optimize sensitivity
- We aim to implement this for the S5 search

< ロ > < 同 > < 三 >

The "Big Picture"

Badri Krishnan(For the LIGO Scientific Collaboration)