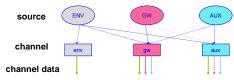


Veto Selection for Gravitational Wave Event Searches

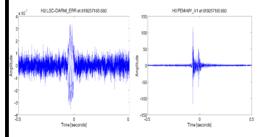
Erik Katsavounidis¹ and Peter Shawhan²

¹ Massachusetts Institute of Technology, Cambridge, MA 02139, USA ² University of Maryland, College Park, MD 20742, USA

1: Large laser interferometers for gravitational-wave detection

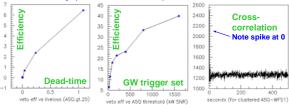

- The LIGO, GEO, VIRGO and TAMA detectors are collecting data with better sensitivity than ever before
- The first gravitational wave (GW) signals detected may be impulsive events, perhaps from core-collapse supernovae or compact binary mergers, lasting a few milliseconds or hundreds of milliseconds
- In any single detector, the signal may look like an instrumental "glitch"
- Removing instrumental and environmental artifacts is paramount in establishing detection of GW events such as these

3: How to evaluate "goodness" of a veto?

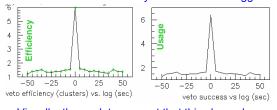

- Do a statistical comparison of GW channel triggers and ENV / AUX channel triggers Efficiency: fraction (%) of GW channel triggers rejected Usage: fraction (%) of veto triggers used to veto GW channel triggers Dead-time: fraction (%) of live-time lost due to the duration of the veto triggers Cross-correlation: histogram of t=t_{gw}-t_{veto} for all possible pairs
- A veto condition has several parameters: channel to be used, significance threshold for veto triggers, time-coincidence window between the GW and veto channels, ...
- · Goodness of a veto also depends on the set of GW channel triggers used to evaluate it
- A rigorous goodness criterion would ideally simplify the tuning process for the selection of veto channels and tuning of veto parameters

2: Event-by-event vetoes

 A signal in the gravitational wave channel may be caused by an environmental disturbance, transient noise in part of the interferometer, ... or a real gravitational wave! How to tell?



- Thousands of other channels monitor the environment and auxiliary interferometer sensing and control signals
- These additional channels may be reliable indicators of the disturbances causing GW channel glitches — can then be used to define vetoes
- For example, could this trigger in the Hanford 2-km interferometer (left) have resulted from a power line transient (right), or is their time coincidence accidental?



4: Example from LIGO's S4 run

- Overall veto strategy and way of thinking matured through LIGO's early runs and within the burst, inspiral and glitch groups
- Goodness of WaveFrontSensor1 veto during one day (2005-05-13 UTC) of S4:

 Time-shifted comparison of GW and veto triggers can shed light on the significance of quantities established from the analysis of un-shifted triggers

- Visually, these plots suggest that this channel provides a good veto condition — veto efficiency is much greater than we would expect by chance
- How can we quantify this?

5: A new figure-of-merit for goodness of a veto

- Several figures-of-merit have been considered within the LSC
- In choosing veto conditions for LIGO S5 burst searches, we have used:
 P = Poisson probability of getting n* or more zero-lag coincidences, given background rate μ_B determined from time-shifted coincidences
- This represents the "significance" of the veto condition, or how unlikely is the observed correlation by random chance
- To be conservative / robust against small-number statistical fluctuations:
- ► For μ_B , use a 90% upper limit on the true background rate, e.g. if 20 time-shifts yielded 0 coincidences, set μ_B = 2.303 / 20 = 0.115
- ► For n*, use the number of zero-lag coincidences minus one in case data contains a real GW event, excludes it from the significance!
- Example channels found to be good vetoes in the Livingston instrument in S5:
 L1-ISCT1ACCX (thresh 35, window 25 ms) :n* = 160-1, μ_B = 1.05 → P = 5.2×10⁻¹²⁸
 L1-EXMAGZ (thresh 1600, window 100 ms) : n* = 17-1, μ_B = 0.1 → P = 2.4×10⁻²³

6: Optimizing veto parameters

- · For a given channel, consider different thresholds and window durations
- · Parameters giving max significance are not necessarily the best to use
- Consider the *incremental* benefit of lowering the veto threshold and/or lengthening the veto window duration — do if significance is high enough
- Example: channel with window \rightarrow 150 ms: Δn^* = 85, $\Delta \mu_B$ = 5.75 \rightarrow P = 2.8×10⁻⁶¹
- Future plan: also consider the different veto channels sequentially, i.e., choose the best veto channel with best parameters and then evaluate the goodness of other veto channels for the *remaining* GW channel triggers