

Mirror Thermal Noise: Gaussian vs Mesa beams

J.Agresti, R. DeSalvo

LIGO-Virgo Thermal Noise Workshop

Mirror thermal noise problem:

Advanced-Ligo sensitivity

Dominated by test-masses thermoelastic (S-TM) or coating (FS-TM) thermal noises.

Can we reduce the influence of thermal noise on the sensitivity of the interferometer?

Without drastic design changes

Mirror Thermal Noise:

Surface fluctuations

Interferometer output: proportional to the test mass average surface position, sampled by to the beam's intensity profile.

Indicative thermal noise trends

Noise spectral densities in the Gaussian beam case

(infinite semi-space mirror)

Exact results require accurate information on material properties and finite size effects must be taken in account.

Diffraction prevents the creation of a beam with a rectangular power profile...but we can build a nearly optimal flat-top beam:

Thermal noise for finite sized mirrors:

1. Precise comparative estimation of the various thermal noise contributions for finite test masses (design optimization).

2. Noise suppression using Mesa beam.

Thermal noise calculations

Interferometer is sensitive to the test mass surface displacement

$$X(t) = \int_{Mirror} d^2 \vec{r} \ u_z(\vec{r}, t) \ f(\vec{r})$$

Levin's approach to Fluctation Dissipation Theorem

$$S_X(\omega) = \frac{8k_BT}{\omega^2} \frac{W_{diss}}{F_0^2}$$

Is the energy dissipated by the mirror in responce to the oscillating pressure

$$P(\vec{r},t) = F_0 f(\vec{r}) \cos(\omega t)$$

Assumptions in our analysis

BHV+LT (accurate) approximate analyical solution of elasicity equations for a cylindrical test mass Pressure distribution P(r,t)

Quasistatic approximation for the oscillations of stress and strain induced by P.

 $\tau_{sound} << \tau_{GW}$

Adiabatic approximation for the substrate thermoelastic problem (negligible heat flow during elastic deformation).

 $r_{heat} \ll r_{heam}$

Brakes down for coating thermoelastic problem

Coating is an isotropic and homogeneous thin film

Material properties:

Parameters : (c.g.s. units)	Fused Silica:	Sapphire:	Coating	
			Ta2O5	SiO2
Density (g/cm3)	2.2	4	6.85	2.2
Young modulus (erg/cm ³)	7.2 10 ¹¹	4 10 ¹²	1.4 10 ¹²	7.2 10 ¹¹
Poisson ratio	0.17	0.29	0.23	0.17
Loss angle	5 10-9	3 10-9	10 ⁻⁴ (total)	
Lin. therm. expansion coeff. (K ⁻¹)	5.5 10-7	5 10-6	3.6 10-6	5.1 10-7
Specific heat per unit mass (const. vol.) (erg/(g K))	6.7 10 ⁶	$7.9 \ 10^{6}$	3.0610 ⁶	6.7 10 ⁶
Thermal conductivity (erg/(cm s K))	1.4 10 ⁵	4 10 ⁶	1.4 10 ⁵	1.4 10 ⁵
Total thickness (cm)	variable	variable	$19 \lambda/4n_1$	$19 \lambda/4n_2$

Ideas behind calculations

- Fixed total mirror mass = 40 Kg.
- The beam radius is dynamically adjusted to maintain a fixed diffraction loss = 1ppm (clipping approximation).
- The mirror thickness is also dynamically adjusted as a function of the mirror radius in order to maintain the total 40 Kg mass fixed.
- Calculation at the frequency 100 Hz

Substrate Brownian noise

$$W_{diss} = 2\omega\phi_{s}\langle U\rangle \qquad \qquad \varepsilon_{rr} = \frac{\partial u_{r}}{\partial r}, \quad \varepsilon_{\phi\phi} = \frac{u_{r}}{r}, \quad \varepsilon_{zz} = \frac{\partial u_{z}}{\partial z}, \quad \varepsilon_{rz} = \frac{1}{2}\left(\frac{\partial u_{z}}{\partial r} + \frac{\partial u_{r}}{\partial z}\right),$$
$$U = \int \frac{1}{2}\varepsilon_{ij}\sigma_{ij}dV \qquad \qquad \sigma_{ii} = \lambda\varepsilon + 2\mu\varepsilon_{ii}, \quad \sigma_{rz} = 2\mu\varepsilon_{rz}, \quad \varepsilon = \varepsilon_{rr} + \varepsilon_{\phi\phi} + \varepsilon_{zz}$$

Substrate thermoelastic noise

Г

Coating Brownian noise

$$W_{diss} = 2\omega\phi_c < U_c > \qquad \qquad U_c \approx \delta U_c d$$

$$\delta U_c = \int_{S} \frac{1}{2} \varepsilon_{ij}^c \sigma_{ij}^c \, dS$$

Boundary condition

$$\varepsilon^{c}_{rr} = \varepsilon_{rr}(z=0)$$
 $\varepsilon^{c}_{\phi\phi} = \varepsilon_{\phi\phi}(z=0)$ $\sigma^{c}_{zz} = \sigma_{zz}(z=0)$

$$\sigma^{c}_{ii} = \lambda_{c}\varepsilon^{c} + 2\mu_{c}\varepsilon^{c}_{ii}, \quad \sigma^{c}_{rz} = 2\mu_{c}\varepsilon^{c}_{rz}, \quad \varepsilon^{c} = \varepsilon^{c}_{rr} + \varepsilon^{c}_{\phi\phi} + \varepsilon^{c}_{zz}$$

$$\sigma_{rz}^{c}=0$$

12

Coating thermoelastic noise

$$d \ll r_{t} \ll r_{beam}$$

$$\left(\frac{\partial}{\partial t} - K_{\beta} \frac{\partial^{2}}{\partial z^{2}}\right) \delta T_{\beta} = -\left(\frac{Y\alpha T}{(1 - 2\sigma)C\rho} \frac{\partial \varepsilon}{\partial t}\right)_{\beta} = -B_{\beta} \qquad \beta = s, c$$

$$(i\omega - K_{\beta}) \delta T_{\beta} = -i\omega B_{\beta} \qquad \text{at the surface}$$

Boundary condition
$$\frac{\partial \delta T_c}{\partial z}\Big|_{z=0} = 0, \quad \frac{\partial \delta T_s}{\partial z}\Big|_{z=H} = 0, \quad \delta T_c = \delta T_s\Big|_{z=d}, \quad K_c \frac{\partial \delta T_c}{\partial z} = K_s \frac{\partial \delta T_s}{\partial z}\Big|_{z=d}$$

$$W_{diss} = \left\langle \int_{V_s} \frac{\kappa_s}{T} \left(\frac{\partial \delta T_s}{\partial z} \right)^2 dV_s \right\rangle + \left\langle \int_{V_c} \frac{\kappa_c}{T} \left(\frac{\partial \delta T_c}{\partial z} \right)^2 dV_c \right\rangle$$

Results for Gaussian and Mesa beam

FS	$\sqrt{S_X^{GB}/S_X^{MB}}$
CB	1.7
СТ	1.7
SB	1.55
ST	1.92

S	$\sqrt{S_X^{GB}/S_X^{MB}}$
CB	1.6
СТ	1.5
SB	1.4
ST	1.4

Comparison between Gaussian and Mesa beam

Sensitivity improvement

	GB	MB
NS-NS	177	228
range	Mpc	Мрс

Coating Thermo-refractive noise estimation

$$\beta = \frac{dn}{dT}$$
 • Infinite mirrors
• Perfect square beam

$$S_{X}(\omega) = \lambda^{2} \beta_{eff}^{2} \frac{4k_{b}T^{2}K}{\rho C} \int_{-\infty}^{\infty} dq_{z} \int_{0}^{\infty} \frac{q_{\perp}dq_{\perp}}{(2\pi)^{2}} \frac{2q^{2}}{K^{2}q^{4} + \omega^{2}} \frac{1}{1 + q_{\perp}^{2}d^{2}} \left| \tilde{g}(q_{\perp}) \right|^{2}$$

$$\widetilde{g}(q_{\perp}) = 2\pi \int_{0}^{\infty} r dr f(r) J_{0}(q_{\perp}r) \qquad \beta_{eff} = \frac{n_{1}n_{2}(\beta_{1} + \beta_{2})}{4(n_{1}^{2} - n_{2}^{2})}$$

$$f_{FT}(r) = \frac{1}{\pi D^2}$$
 for $r \le D$, 0 for $r > D$

$$\sqrt{\frac{S_X^{GB}}{S_X^{FT}}}(f = 100Hz) \approx \sqrt{3} \qquad D = 4w_0 \qquad w_0 = 2.6 \text{ cm}$$
$$w = 6 \text{ cm}$$

Finite size test mass correction for Gaussian Beam

5ppm Diff. loss

