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Gravitational Wave
Detection

e Gravitational waves predicted by Einst
e Accelerating masses create ripples in s
e Need astronomical sized masses movin

speed of light to get detectable effect

ometer Gravitational-wave Observatory

d one 2 km long interferometers -
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Recycling
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LIGO LIGO Sensitivity

Measured sensitivity 6/2006

2 <40 Hz
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LIGO Current LI1GO Noise

Present nOise at deSign Value Strain Sensitivity for the LIGO Hanford 4km Interferometer
= Some excess noise < 50 Hz |5 L |
= Noise reduction during breaks =l

Currently taking data e
= Will collect 1 years worth of -3

triple coincidence =
= Began in November 2005 e

= Extensive data analysis ongoing

Best Strain Sensitivities for the LIGO Interferometers TR ; T . e
. Comparisons among SI - S5 Runs  LIGO-G060009-01-Z le-24 - — = F;ﬂquc; Cy'“m T —— i
Hanford 4 K sensitivity
i = Neutron star inspirals 14.5 Mpc
= = 10 M, black hole inspirals to 50 Mpc
= Stochastic background 7.5 10°
= Crab pulsar £ 2.8 10
= Sco X-1¢3.0 10
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Advanced Configuration
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Proposed Sensitivity
e Factor of 15 in strain improve
e Seismic isolation down to 10 Hz
e 180 W of laser power
e Larger optics with improved co:
e Additional mirror for signal rec



AdvLIGO Noise Curve

Advanced LIGO
Sensitivit

Initial LIGO Coating - T

{1 | ===Quantum noise
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Limits sensitivity 40 Hz

Need improved coating
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frequency, even with
power/radiation press

Frequency [Hz]

Initial LIGO Coating

Thermal noise also lim
sensitivity, sets floor

Binary Neutron Star Inspira
Binary Black Hole Inspiral
Neutron Star/Black Hole Ins
Stochastic Background



Measurement
Techniques

Coating Thermal Noise

TNI Noise Curve - Fused Silica Mirrors
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Optical Performa

e Absorption measurements

photothermal common path

interferometry (Stanford, L

e Developments with initial
e High Scatter

e High Absorption



Initial LIGO
Tantala/ZSilica Coating

THI Total Hoise
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Coating Mechanical Loss
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tania as a dopant into
to lower mechanical

4)10 + £(1.2+0.6) 10°
1)104 + f(1.4+0.3) 10°
1)104 + f(-0.2+0.4)10°
2)104 + £(1.7+0.6) 107
2)104 + £(0.1:0.4) 10

al, Submitted to Classical and
y, 8r-qc/0610004
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Advanced LIGO Baselin
Coatin

Advanced LIGO Baseline
——— : —
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Advanced LIGO Back
Coatin

AdVLIGO Noise Curve Ratio(Si:Ti) Absorptio
L I I - ] I I - ;-deantum noise‘ ‘ ‘ I Run 1 50/50 1 o5 ppm
orl —omyomsms | Run2  65/35 0.5 pp

Silica Brownian thermal noise °

= Coating Brownian noise i I h k S l - R
===Coating thermorefractive noise y l C a m e

===(Charge fluctuation noise

e e | ¢= (2.4 +/- 0.9)
f Thin Sample
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Run2 ¢=(1.9

e Low Young’s Modu
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R e Good Mechanical

ARy 152 e Good Optical Abso
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Other Coatings
Attempted

ilica - high mechanical loss, unknown optical absor
ilica - poor adhesion, poor absorption, never measu
Silica - thick coating, good mechanically and optica
beam (oxygen) - interesting, shows differences in
en masks but not improvement over baseline

oor - high mechanical loss, waiting on annealing in
e, high absorption

n beam - increased mechanical loss

doped Tantala/Silica - no improvement in mechani
annealings - inconclusive, no major improvements
issues

substrate polishing - no effect on mechanical loss

hese do not have Young’s modulus measurements



LIGO New Coating Materials

nnealing - improve stoichiometry
beam - xenon made things worse
as dopant into Ta, Ti, or Si
dopant into Ta (and Ti, Nb, Hf, etc) B4
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Strain [1/+Hz]

Thermo-optic Noise

High Thermorefractive Noise

T LIS | .
b ===Quantum noise

Coating thermorefractive (
-~ Seismic noise | coating thermoelastic noise

| ===Gravity Gradients

=—Suspension thermal noise COherent nOise sources

Silica Brownian thermal noise |
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| ==Total Noise
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""" ~oo o1 by TNI upper limits
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«Significant reduction in se

Advanced LIGO with High
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LIGO dn/dT Measurement

eThermorefractive(B=dn/dT)/coating
thermoelastic noise(a=dL/dT) noise correlated

e 3 from literature (nciJphys b:Appl Phys, 37 (2004) 3151)
1.2 X 104

e This value makes combined noise an AdvLIGO
limiting noise source

e Limits from TNI encouraging that 3 is lower

e Need a good value for tantala, titania doped
tantala, and other promising coatings

Rvs handa

gUD 400 500 s00 700 800 900 1000 1100 1200
nm

= Experiment at Embry-Riddle | B
Aeronautical University sl Ay 8 n N

e Measure change in reflectivity -
versus temperature

e Use green He-Ne laser at 45 degrees

= 100 C change in temperature enough Laeer polnter:
to verify/rule out Inci result for tantala [N

AL . o LU

Angle of incidence:

45 deg.



Young’s Modulus of
Coatings

ng’s modulus just as important to thermal noi
loss

oo

lection technique used to measure coating im
tion with Stanford (I Wygant)

a/tantala 176 +/- 1.1 GPa Fit of Young’s MOGHER
a/tantala 167 +/- 1.3 GPa L campla4nTA,ON,0, (478, dcagum

antala 91 +/- 7.0 GPa e ]|
/tantala 156 +/- 20 GPa ]

d values for material densities < *

j 105}

ial Young’s moduli
) +/- 30 GPa -
0 +/- 30 GPa (MLD) Froquercy (W)
0 +/- 30 GPa (WP)

s problematic when propagated

it




Study of Materials

Fluorescence Counts

2000

Dispersed Fluorescence Spectrum
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X-Ray Florescence Results from Southern

University / CAMD

Electron Energy Loss
Spectroscopy results from
Glasgow

Measurements being
Glasgow, Southern, a
Caltech

» Titania concentratio
titania-doped tantala ¢
— LMA/SU/UG

» Southern finding tita
XRF, XANES, EXAFS
* Plans for AFM and G
Southern

» Hopes for further ins
coating makeup and s
from studying contam




Modeling and Molecular
Cause of Mechanical Los:

Goal: A description of mechanical loss in thin film amorphous oxides
from basic principles

ynamics calculations beginning at University of

LIGO

log(¢) (Loss Angle)
B T T T
4

Florida
king semi-empirical model of loss in fused silica
ncy dependence from two level systems o at | TosVIS) am
loss as observed phenomenon % e Y el
° ° PRI W S e . Quantum calculations of silica
Il molecular description of silica loss *%_«4.{ ¢

loss caused by two member rings
to other amorphous oxides
us two level systems
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Thermal Noise InThird
Generation

Crucial to improve beyond Advanced LIGO levels to exploit QND, very low
frequency seismic isolation, improved topologies, high laser power, etc

ies as reflectors IT™ IETM  EETM
(Phys Lett A 334 (2005) 67) |
ant added complexity

erimental work so far - —--
ectors L=4km

Ky and Vyatchanin (Phys Lett A 324 (2004) 345)

al concerns (scatter, finess, angular stability, etc)

ment at Australian National University -99.89% reflectivity obs
peratures

o restudy all materials as properties change
reliminary experimental work

ate materials (sapphire, silicon, etc)

quire new coatings

y dopants added to substrates

eam shapes

eams - better averaging of thermal fluctuatic
order modes

| theory from O’Shaughnessy/Lovelace
ments at Caltech

il
I
T




ptical power in mirrors

in coatings because of
the Fabry-Perot cavities
causes physical

hanges in index of

gth changes distorts
trast defect, ultimately

oise and poor sensitivity
Radiative Ioad tailoring

Thermal Lensing

Scanned beam
z=naor heating

eThermal lensing can L
adding heat to cold pa
eUse ring heaters or C(
eLimit to how much he
provided
eInhomogeneous abso
scanning laser system
eIncrease in rad p
eComplicated cont
*Need coatings to have
< 0.5 ppm and homoge



Xcess Absorption at
Hanford

s curved to match
rror curvature at 8 W
sign assumes a value i
tion

matching at 2.5 W
al absorption causes
rmal lensing
orption has to be in
ity optic 16!
Irrors or beamsplitter

Sideband Recycling Gain

Input Power {W)

rferometers (2 K at

d 4 K at Livingston) Sideband Recyc
ve much less LIGO 4K Hanfor

than expected




Initial LIGO Thermal
Compensation Design

laser directly projected onto mirrors

eater not used to minimize installation time |
Ing laser not used to avoid Shack-Hartmann se
N pressure issues

masks used to compensate for high or low a
er controlled by acousto-optic modulator (
)larization plate (H1, L1)

ntrolled by feedback from IFO channels

“uic

—Tadl Ower-heat pattemn
Gkl Inner radius = 4em

Unter radins =11cm
Over=heat  Under-heat Inhomogencous

Correction Correction Correction



LIGO Bench Tests of H1:ITMXx

e H1:ITMx shipped to Caltech
immediately after removal

e Absorption measured using
photothermal common-path
interferometry

e Background < 1 ppm

e Significant outliers with
absorption > 40 ppm

X (mm)

Dust source of absorption?
e Soot from brush fire in 20007
e Attracted by charged surface?
e |Insufficient cleaning and
handling procedures?

23



LIGO Conclusions

hermal noise limiting noise source in Advance LI
requency band

ed source of coating mechanical loss is internal f
t materials

2X, typically tantala, is the biggest source of ther
means of reducing mechanical loss

a doped into tantala

doped in titania

er techniques tried to improve thermal noise, m
ued

optic noise a potential problem that is understudi
re information on coating Young’s moduli

rk to be done with characterizing coating materi
g thermal noise theory

1s for third generation only beginning to get atten
on and scatter high in Initial LIGO
at levels that would not be acceptable in Advanc




Theory

Sx(f) :d(l'GZ)/ (Tl: WZ)((l/ (Yperp (1'62))'2 cY22Ypara/ (Yperp2 (1'62)(1'61))) ¢perp+
Yparaﬁz(l'zg)/(Ypeer(1'61)(1'0))(¢para'¢perp)+Ypara(1+G)(1'26)2/(Y2(1'612)(1'0))¢para)

What we have

lete theory of infinite mirror from Levin’s theorem
ropic coatings including Young’s modulus, loss angles, a
ratios

onship between total anisotropic coating parameters an
ic individual material parameters

odels of finite mirror effects

of coating thermoelastic loss

al theory of coatings and substrates, both Brownian and
elastic, for any beam shape for infinite mirrors

ization of coating thicknesses for thermal noise and refl
by V Galdi)

What we need
ical formula for finite mirror effects
tical theory of finite mirrors
ular level description of loss angles and other paramete
lete optimization over thermal noise, reflectivity, abso
, etc.
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D Scatter in Initial LI
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hniques used to
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LIGO

Absorption improveme
at Hanford

laced with spare optic
g wiped in place

ics (ITMx and ITMy)
oved absorption

3 ppm
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e Power 6.8 W - mod
e Shot noise at design
e 15 Mpc binary neut
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2,
—

Thermal Compensation
Upgrades and Challenges

) compensation effective at 100 mW absorbed
IGO expected to have 350 mW absorbed

s and handling will be crucial
eep absorption down

mprovements for advanced detectors
sorption masks

aser system

tion plate in recycling cavity

sorbing AR coating —
t, reducing requirements on RF sidebands ' |

2nsitivity o
rials - sapphire ~ 20 ppm/cm absorption M
tion of arm cavities

eous absorption

CO2 laser
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Advanced LIGO
Thermal Compensation

ng heaters simplest compensation system

Adds a lot of unnecessary heat
Could cause thermal expansion of other parts

anning laser system causes noise
Jumps in location cause step function changes in thermal ex
Harmonics of jump frequency could be in-band
Could require feedback with Hartmann sensors or similar

aring laser system works on Initial LIGO
Could require unique masks for each optic
Unique masks could be inappropriate as system is heating ug
CO2 laser noise still a problem

Vi Ower-heat pattem
lewport Lmer radivs = dem
Omter racing =11cm

Over-heat  Under-heat Inhomogeneous
Correction  Correction  Correction



