Hartmann Sensor for advanced gravitational wave interferometers

Aidan Brooks, Peter Veitch, Jesper Munch

Department of Physics The University of Adelaide

LIGO-G060103-00-Z

LSC March 2006

Outline of Talk

- Hartmann wavefront sensor
- Experimental validation
- Tomographic capabilities

Objectives

- Develop versatile, robust wavefront sensor
- Distortion must ultimately be corrected to $\lambda/100$
- Sensor needs to have sensitivity << λ/100
- Sensor should not interfere with input mirrors or GWI laser beam.
- Sensor suitable for wavefront servo

Hartmann Wavefront Sensor: How It Works

Optimized Hartmann Plate

- Optimized for distortion in advanced GWIs
 - Spatial resolution
 - Sensitivity

Hole size	150μm
Hole spacing	430μm
Distance to CCD	10mm

Hexagonal cells added to highlight arrangement

Centroiding Single Hartmann Spot to Sub-Pixel Accuracy

- Fractional centroiding algorithm allows positioning of centroid to approximately (pixel size) / (number of grayscale levels)
- Dynamic Range of Camera \approx 11.5 bits.
- Pixel Size = 12μm

Hartmann Wavefront Sensor: How It Works

- Spot displacement proportional to gradient of wavefront
- We can locate spots ± 20nm

Sensor Has Very Low Noise

RMS noise = $\lambda/1100$

Sensor accuracy

Hartmann Sensor

- Very low noise, because each pixel is separate against a dark surround, due to the optimization of hole size, separation and lever arm
- Superior to other sensors (eg Shack Hartmann, Interferometers etc)
- Suitable for wavefront correcting servo system

Hartmann Sensor

- On axis
- Off axis
- Tomography
 (more than one off axis view)

Single View Optical Tomography Works for Cylindrical Symmetry

 E.g. Distortion induced by absorption of Gaussian beam heating an isolated optic

Representation of Refractive Index Distribution in Distorted Optic

- Divide into annular volume elements (voxels)
- Cylindrical symmetry assumed

Wavefront Distortion Analyzed with Radon Transforms

Experimental Objectives

- Demonstrate that tomographic sensor works
- Validate results with independent high precision on-axis interferometer
- Experiment constructed to mimic distortion in Advanced LIGO

Experiment to Show Sensor Works

Off-axis Hartmann beam, (HeNe, LED)

Simulation of Experiment Results

Original off-axis OPD

Best fit with voxel projections

Simulation shows Tomographic Analysis is Accurate

Off axis reconstruction agrees exactly with on axis interferometer

Dashed line: 5 x absolute difference, dots: reconstruction

Conclusion

- Hartmann sensor has accuracy and sensitivity required for advanced interferometers
- Current RMS Noise of sensor~ λ/1100
- Advantageous for both on axis and off axis
- Voxel analysis shown to be accurate
- Initial experimental results are promising
- Can extend to non-cylindrically symmetric distributions use multiple views and azimuthal voxelation
- Ideal for active feedback servo systems

