

LIGO G060055-01

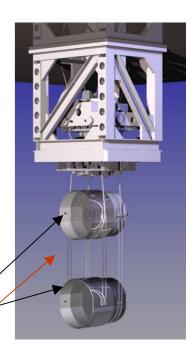
ALL-METAL CONTROLS PROTOTYPE QUADRUPLE PENDULUM SUSPENSION

Calum I. Torrie (given by Caroline A. Cantley)

on behalf of the entire team involved in the work associated with the all-metal controls prototype pendulum suspension for Advanced LIGO

LSC MEETING

HANFORD


MARCH 2006

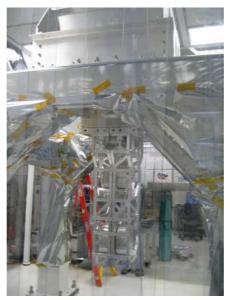
Suspension Design for Advanced LIGO

- Four stage pendulum with three stages of cantilever blade springs for enhanced vertical isolation
- Minimise noise from control:
 - damping at top mass
 - use of reaction pendulum
- Target suspension noise level for main optics (test masses): 10⁻¹⁹ m/√ Hz at 10 Hz
- Reduce thermal noise:
 - 40 kg silica mirror suspended on silica ribbons
- Involves two prototypes
 - Controls prototype all metal (US with UK)
 - Noise prototype with silica final stage (UK with US)

silica penultimate and test masses silica ribbons

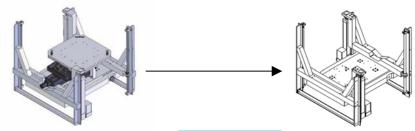
All-Metal Controls Prototype Quadruple Pendulum Suspension

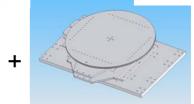
- team from Caltech, Glasgow, MIT, RAL & Stanford
- aim is to check
 - mechanical design
 - control aspects
 - installation & alignment procedures
- construction and initial testing performed at Caltech
- suspension delivered to LASTI in February 2006
 - construction and assembly complete
 - tests on the suspension with support structure underway
- first installation fixtures to be delivered in April 2006
- suspension will be moved into BSC chamber (on solid stack) mid-April 2006


18th March 2006

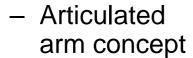
Quad Controls Prototype @ LASTI

- Quad assembled and suspended on solid stack, mounted on test stand, in February 2006
- Relative alignment of the two chains to 0.3 mrad in pitch & yaw
- Prior to installation the suspension structure will be aligned on the solid stack using the auto-collimator


Quad Controls Prototype @ LASTI



Installation Fixtures (alignment tooling)


- For Quad controls prototype
 - Lift table (mechanised)

- Custom X, Y, Pitch, Rotation table
 - 300 lbs
 - Tested under 2000lb load

- Mobile vertical table (lighter alternative)
 - 300 lbs
 - Tested under 2000lb load

2nd QUAD structure

- Equivalent structure with "dummy" non-suspended mass
- Installed on technology demonstrator at Stanford
- Will be shipped to UK for further noise prototype development
 - optimisation
 - tuning of monolithic stage assembly procedures

Refer to B. Lantz talk at the SEI/SWG breakout session

What's Next

- Controls prototype quad suspension tests @ LASTI
 - damping, transfer function, mode frequencies
 - alignment & transfer to beam splitter chamber (BSC) on solid stack
 - installed onto seismic table combined testing
- Continued development of installation tooling
- Other work
 - Final design of input mode cleaner suspension for noise prototype production
 - Conceptual design of double pendulum pick off mirror suspension
 - Output mode cleaner suspension design