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• What are we building
• How are we putting it together
• Which tests to perform
• How do we implement it in the HAMs
• How much HAM-SAS costs
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A seismically attenuated optical  
bench for the HAM chambers

Optical bench
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Horizontal direction, 
x, y, ϕ the Inverted Pendula

Flex joints

legs

Spring-box
platform
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Attenuation in 
the vertical direction, 

the GAS springs

Optical bench

Spring-box 
platform GAS springs
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Pedigree

• The present LIGO optical benches
• The Virgo passive Superattenuators
• The TAMA SAS filter and IP know how
• Further advances in Inverted Pendula (IP)

– => 80 to 100 dB
• Further advances in Geometric Anti Spring 

filters (GAS)
– => 60 to 80 dB
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Performances
• Deliver more than 60 dB attenuation at >  1 Hz

– performance & design requirements per E990303 
http://www.ligo.caltech.edu/docs/E/E990303-03.pdf

– these requirements are being re-evaluated and likely reduced, though 
perhaps not in the total rms motion

• Single, passive layer attenuation to satisfy requirements 
and minimize complexity

• Significant attenuation at the micro seismic peak
• Internal damping for minimized control burden
• Tidal control with pointing accuracy at few nm level
• No standing control forces
• Provide earthquake protection for up to ±12 mm 

movements
• Recycle existing optical benches where available
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Development status

• HAM SAS have been extensively  tested at 
the component level, 
not yet as an integrated system

• Factory tests   and/or   LASTI tests 
will validate the system performances
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Controls
(see Virginio/Valerio presentations)

• The bulk of the performance will be passive
• The role of controls is minimized
• Controls provide positioning and pointing
• Modes are mostly low quality factors Q~1/f2

Active controls may provide additional damping
• The specifications to be be met in passive mode, 

with only DC positioning controls
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Controls
(see Virginio/Valerio presentations)

• The equipment for positioning and viscous damping are 
identical, viscous damping can be achieved with only 
software 

• DC controls with or without viscous damping will be 
implemented

• Inertial damping and/or active attenuation will require the 
implementation of accelerometers

• Inertial damping and active attenuation, with increasing 
complexity levels, would provide a performance reserve or 
boosting

• Studies at LASTI will show the necessity and/or convenience 
of these improvements which are very likely not strictly 
necessary for the OMC
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Horizontal direction, 
x, y, ϕ the Inverted Pendula

Flex joints

legs

Intermediate
springbox
platform
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IP Resonant Frequency
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Light legs no counterweights
HAM IP first tests

• Preliminary test results
• 60 dB achieved without CW with 1/8 payload
• >70 dB expected with full payload
• >80 dB with CW
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the C.O.P.   
attenuation saturation 

• Some shaking energy transmits due to the 
Percussion point effect
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Introduction of counterweights
The CW will boost the performance
from 70-80 dB to 100 dB
of horizontal attenuation
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CW tuning

1. Dead reckoning using FEM ?
2. Component tuning ?
3. Full system tuning ?

• In the past full system tuning
• Light legs already yield good performance
• 10% precision is sufficient
• Probably step 1 or 2 would be sufficient
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Q-factor <10 at LF tune
Q vs. Frequency

Frequency [Hz]

0.0 0.1 0.2 0.3 0.4 0.5

Q

0

500

1000

1500

2000

2500

3000

Q ≅
1
φ

ω 2

ω 2 +
g
L

≈
φ −1

φ −1 L
g

ω 2

⎧

⎨
⎪

⎩
⎪

ω >> g
L

ω << g
L

φ ≅ .0009

Q
  f

ac
to

r

Low Q means limited control damping requirements
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Attenuation in 
the vertical direction, 

the GAS springs

Optical bench

Intermediate 
Springbox
platform

GAS springs
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Tuning GAS springs to 30 mHz

Control 
LVDT

(position)

Magnet

Coil

resonance frequency limited at >200 mHz
lowered < 100 mHz with E.M. springs

Variable Gain

Position

Force
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Lowering the system stiffness

As the Transfer Function is shifted to lower frequencies,

the Q factor decreases
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Lowering the resonant frequency
Provide LF seismic attenuation

•Vertical Passive attenuation limited to ~ 20 dB at 
the micro seismic peak

•(Obviously much more 
isolation available in the 
horizontal direction)
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• because of hysteresis, below 120 mHz the 1/f2slope 
softens towards a 1/f slope

1/f

1/f2

The hysteresis limit?
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Neutralizing the COP 
limit:   the boom

• 60 dB limit without 
counterweight rods

• Down to ~ 80 dB with 
C.O.P compensation
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The effect



LIGO-G-050620-D

25

The Boom effect

overcompensation

• 80 Db per 
filter (or 
better) is 
possible
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Sensors and coil actuators

• produced with UHV 
compatible materials 
and procedures
– TAMA resolution 

(nm/√Hz)
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Static and dynamic control elementss
MICRO POSITIONING AND POINTING

• LVDT for local nanometer positioning memory
• Voice coil actuator dynamic controls
• Position and alignment controls < 30 mHz

Improvements:
X10 new drivers
X4  reduced geometry

20nm/√Hz
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• What are we building
• How are we putting it together
• Which tests to perform
• How do we implement it in the HAMs
• How much HAM-SAS costs
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Assembly philosophy

• Clean assembly and factory tuning 
maximized
– Minimize expense of LIGO manpower

• Training fabricators to our procedures
• Shipping clean assembly
• Develop clean installation techniques atg

factory
assy.-proc.-D050198.doc
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Examples of safe 
HAM SAS assembly

• Pull the blade over a form
• Clamp for transport
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Examples of safe 
HAM SAS assembly

• Mount on the base and against the keystone

• Transfer the load and tune
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Tuning the GAS filter

• Use screws 
for radial 
compression 
tuning

• Add mass    to 
change 
working point
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Resonant frequency vs. load

• Best working 
point
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Tuning of the 
Counterweight
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Counter-Weight tuning

• Use a calibrator larger 
filter to excite a bench 
GAS filter

• Measure TF
• Mount and adjust 

counterweights to 
minimize the TF

accelerome ter

accelerome ter
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• Special procedure to 
align IP legs and 
avoid cradle effects

• Legs aligned to <1/4 
mm
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IP tuning
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• What are we building
• How are we putting it together
• Which tests to perform
• How do we implement it in the HAMs
• How much HAM-SAS costs
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Factory Characterizing
HAM SAS?

• Traditionally characterization of system is done in 
a scientific lab

• There is no time to move the system to Caltech for 
characterization and maintain the time-line for the 
OMC implementation

• We thought of performing the characterization at 
factory
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Calibrator tools
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Factory Characterizing
HAM SAS?

• The calibrations would be performed using  
devices that allows shaking the entire attenuator 
and measure its performance

• Separate characterization (and tooling) in the 
horizontal and vertical direction

• Need to implement some level of controls
• Do the tuning in the dirty stage, then disassemble, 

clean and assembly
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Factory Characterizing
HAM SAS?

• Do we need to make a full characterization or is it 
sufficient to characterize the HAM SAS 
performance at LASTI?

• We can (mostly) optimize the system performance 
with the calibration

• Can we afford to bypass the characterization step?
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Implementing the 
accelerometers?

• The HAM SAS passive performance will almost 
certainly be sufficient for OMC

• There is no need for inertial damping because the 
LIGO optical components are internally damped

• Accelerometers maybe necessary for 
characterization

• Accelerometers in LASTI allow development of 
performance boosting active attenuation controls
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• What are we building
• How are we putting it together
• Which tests to perform
• How do we implement it in the HAMs
• How much HAM-SAS costs
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Moving in at LASTI

900

HAM-SAS
packaged and
shipped as a
unit

A special 
cart is used 
to rotate the 
assembly
and move it 
from the 
loading dock 
to the HAM
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Sliding into the HAM
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Sliding into the HAM

• Two long rails are installed across the HAM doors extending two 
meter outside the chamber, resting on synchronous jacks on 
installation carts

• The rails are lowered to extract the optical bench from the chamber
• The optical bench slides off the HAM chamber and is lowered on a

cart

• The rails descend to pick HAM-SAS from its cart
• The rails are raised to slide HAM-SAS inside the HAM
• The rails are lowered to position HAM-SAS on cross tubes

• The operation is repeated to pick-up the optical bench and lower it 
over HAM-SAS.  The optical bench can be installed with most pre-
assembled optics
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• What are we building
• How are we putting it together
• Which tests to perform
• How do we implement it in the HAMs
• How much HAM-SAS costs
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Construction costs

• HAM SAS 128,200
• Assembly   41,100 
• Cleaning/FTIR 56,700 
• Packaging shipment 11,800
• Cleaning room 20,400
• Calibration tools (filter only) 15,000
• Total 273,200 $
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Readout electronics cost

• Vacuum motors 2,040*8$ 16,300
• Motor drivers ? 5,000$? 5,000
• LVDT driver 3*1,250 Eur 4,500
• Coil driver 4*1,300 Eur 6,200
• UHV cables feed-through 13,500
• NIM crates 2  (available?)
• Total readout electronics 45,500 $
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LASTI Installation carts 
costs

• Lift-transfer cart ?20,000? $
• HAM-SAS cart ?2,500? $
• Optical bench cart ?2,500? $
• Total ?25,000? $

Internal cost estimations
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Characterization costs

• Bench and tube 59,000
• Ballast bench 3,700
• Characterization tools 

(complement to calibration costs) 30,100
• Total 92,800 $

• Item 1 and 2 necessary and recycled in subsequent OMC HAM SAS
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Accelerometer cost

• Accelerometer 4*4,350 Eur 20,900
• Acceler. Driver 2*3,200 Eur 6,400
• Total accelerometers 27,300 $
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Additionals

• GAS balances 8*690 $ 5,500
• Eddy current Dampers 

(if necessary) 4*2,650 $ 10,600
• Total additionals 16,100 $
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Costs summary (#)

• Construction, cleaning, ass.y 273,200 $ 273,200
• Readout electronics 45,500 $ 318,700
• Installation carts ?25,000?$ 343,700
• GAS balance 5,500 $ 349,200
• Accelerometers (+) 27,300 $ 376,500
• Dampers (x) 10,600 $ 387,100
• Characterization (*) 92,800 $ 479,900

* 63,000$ of which is for 1 set of bench and tubes for OMC
# N.B.: Does not include travel costs for personnel to help with 

installation, commissioning and test of the HAM-SAS
+ witness sensors and/or associated data channel costs may have to 

be added if the accelerometers are not implemented
x If needed
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