Advanced Interferometer Configurations Theory of Quantum Mechanical Noises

Yanbei Chen Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Potsdam, Germany

Australian-Italian Workshop on GW Detection

LIGO-G050530-00-Z

Quantum mechanics in GW interferometers

This is just one arm, interferometer brings two arms together

- GW interferometers use light to measure relative motions of mirrors
- Need to measure **position** repeatedly in order to detect h(t), but

$$[\hat{x}_{\mathrm{H}}(t_1), \hat{x}_{\mathrm{H}}(t_2)] = i\hbar \frac{t_2 - t_1}{M} \neq 0$$

Quantum mechanics does not allow us to do so! ... at least not perfectly

Australian-Italian Workshop on GW Detection

Yanbei Chen

The Standard Quantum Limit

A Standard Quantum Limit was formulated by Braginsky in the 1960s

The Standard Quantum Limit

Australian-Italian Workshop on GW Detection

Yanbei Chen

Shot & Radiation-Pressure Noises

- "Conventional Interferometer":
 - Shot & Rad. Pres. Noises uncorrelated. [Add powers]
 - Rad. Pres. Noise dominates at lower freq.'s; Shot Noise at higher freq.'s
 - Total Noise never surpasses the Standard Quantum Limit

Standard Quantum Limit

- The Standard Quantum Limit is indeed right beyond Advanced LIGO (LIGO-II), with 40kg test mass.
- If we want to improve by another factor of 10 in "LIGO-III", or "EGO", either
 - use 4000kg mirrors
 - or surpass the SQL
 - or some combination
- The Standard Quantum Limit can be surpassed, and ways of doing so will be of great interest for 3rdgeneration detectors!

Surpassing the SQL

Braginsky (1970s): Measure an observable that commutes at different times

"Quantum Demolition"

Position eigenstates do not stay eigenstates during evolution --- being "demolished" continuously

"Quantum Non-Demolition"

Measure Quantities whose eigenstates stay eigenstates, e.g, momentum of free mass

But the "measurement" here is only "postulated" in reality, they are executed by "photons", which are quantized

Quantum Noise in GW Detectors

[Caves, Walls & Milburn, Braginsky & Khalili, ...]

Quantum Noise in GW Detectors

Quantum Noise in GW Detectors

Optical-Field Commutator cancels Test-Mass Commutator

Optical Fields and Test-Mass Position *together* form a **QND observable**! This includes all noises -- no extra noise dictated by Quantum Mechanics.

SQL derived from Quantum Measurement Theory

• The output fields

$$E_{1}^{\text{out}}(t) = E_{1}^{\text{in}}(t)$$

$$E_{2}^{\text{out}}(t) = \frac{E_{2}^{\text{in}}(t) + \sqrt{\mathcal{I}}x(t)}{\sum_{i=1}^{t} \frac{\mathcal{I}}{M} \int_{0}^{t} dt' \int_{0}^{t'} dt'' E_{1}^{\text{in}}(t)} + \sqrt{\mathcal{I}}\left[\frac{\mathcal{D}C}{x_{0} + \frac{p_{0}t}{M} + G(t)}\right]$$
From Optical Fields From Free Test Mass

• In Frequency domain, if we measure E_2^{out}

Noise Spectrum
$$S_{x} = \underbrace{\frac{1}{\mathcal{I}}S_{E_{2}E_{2}}}_{\text{Shot}} + \underbrace{\frac{\mathcal{I}}{M^{2}\Omega^{4}}S_{E_{1}E_{1}}}_{\text{Rad. Press.}} + \underbrace{\frac{2}{M\Omega^{2}}S_{E_{1}E_{2}}}_{\text{Correlation}}$$
Uncertainty
Principle
$$S_{E_{1}E_{1}}(\Omega)S_{E_{2}E_{2}}(\Omega) - S_{E_{1}E_{2}}^{2}(\Omega) \ge \hbar^{2}$$

SQL derived from Quantum Measurement Theory

• The output fields

$$E_{1}^{\text{out}}(t) = E_{1}^{\text{in}}(t)$$

$$E_{2}^{\text{out}}(t) = \frac{E_{2}^{\text{in}}(t) + \sqrt{\mathcal{I}}x(t)}{\sum_{i=1}^{t} \frac{\mathcal{I}}{M} \int_{0}^{t} dt' \int_{0}^{t'} dt'' E_{1}^{\text{in}}(t)} + \sqrt{\mathcal{I}}\left[\frac{DC}{x_{0} + \frac{p_{0}t}{M} + G(t)}\right]$$
From Optical Fields From Free Test Mass

• In Frequency domain, if we measure E_2^{out}

Noise Spectrum
$$S_{x} = \underbrace{\frac{1}{\mathcal{I}}}_{\text{Shot}} S_{E_{2}E_{2}} + \underbrace{\frac{\mathcal{I}}{M^{2}\Omega^{4}}}_{\text{Rad. Press.}} S_{E_{1}E_{1}} + \underbrace{\frac{2}{M\Omega^{3}}}_{\text{Correlation}} S_{E_{1}E_{2}}$$
Uncertainty Principle
$$S_{E_{1}E_{1}}(\Omega)S_{E_{2}E_{2}}(\Omega) - S_{E_{1}E_{2}}^{2}(\Omega) \ge \hbar^{2}$$
In Absence of Correlations...
$$S_{x} \ge 2\sqrt{\left(\frac{1}{\mathcal{I}}S_{E_{2}E_{2}}\right)\left(\frac{\mathcal{I}}{M^{2}\Omega^{4}}S_{E_{1}E_{1}}\right)} \ge \frac{2\hbar}{M\Omega^{2}} \equiv S_{x}^{\text{SQL}}$$

- The Standard Quantum Limit only exists for specific readout scheme and input state
- SQL can be circumvented when either of the above are modified

$$E_1^{\text{out}} = E_1^{\text{in}}$$
$$E_2^{\text{out}} = \frac{\mathcal{L}_2^{\text{in}} - \frac{\mathcal{I}}{M\Omega^2}E_1^{\text{in}} + \sqrt{\mathcal{I}G}$$

- modification of input state: frequency dependent squeezing
- modification of readout scheme: frequency dependent detection

- The Standard Quantum Limit only exists for specific readout scheme and input state
- SQL can be circumvented when either of the above are modified

$$E_1^{\text{out}} = E_1^{\text{in}}$$
$$E_2^{\text{out}} = E_2^{\text{in}} - \frac{\mathcal{I}}{M\Omega^2} E_1^{\text{in}} + \sqrt{\mathcal{I}G}$$

- modification of input state: frequency dependent squeezing
- modification of readout scheme: frequency dependent detection

- The Standard Quantum Limit only exists for specific readout scheme and input state
- SQL can be circumvented when either of the above are modified

$$E_1^{\text{out}} = E_1^{\text{in}}$$
$$E_2^{\text{out}} = E_2^{\text{in}} - \frac{\mathcal{I}}{M\Omega^2}E_1^{\text{in}} + \sqrt{\mathcal{I}G}$$

- modification of input state: frequency dependent squeezing
- modification of readout scheme: frequency dependent detection
- Both require frequency dependent rotation of quadratures, which can be realized by detuned Fabry-Perot Cavities. [Kimble et al., 2001; Appendix of Purdue & Chen, 2002]
- Bandwidth of typical filter cavities ~ 100Hz; loss has to be lower than squeeze factor. [Kimble et al., 2001]

[Kimble et al., 2001]

 $\gamma = 2\pi \times 100 \text{ Hz}$ $I_c = 800 \text{ kW}$ 10dB squeezing 20 ppm loss/round trip, 2 filters, each 4 km total loss ~ 1%

Other interferometer configurations: Speed Meters

Classical Speed Meters

- Speed Meter [*for* $f < \Delta$]: transfer function ~ *f*, i.e., **suppressed at low frequencies**
- Sensitivity traces the SQL: **Equal amount of Shot Noise and Radiation-Pressure Noise**

Quantum Noise of Speed Meters

[Purdue 2002; Purdue & Chen 2002]

Speed-Meter input-output relation *for f*< Δ

- Low frequencies: ordinary homodyne detection & squeezed state with fixed squeeze angle will be optimal. [But this will not be the usual phase quadrature.]
- *High frequencies*: optimal detection quadrature will be *phase quadrature* again.

Australian-Italian Workshop on GW Detection

Yanbei Chen

Advanced Interferometer Configurations Theory of Quantum Mechanical Noises [Continued]

Yanbei Chen Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Potsdam, Germany

"Detuned" interferometers

- Invented by Drever & Meers
- Signal recycling cavity not resonant/anti-resonant with carrier
- Resonant to GWs with particular frequency

"Detuned" interferometers

- Low-power regime, shot noise only:
 - Tunable optical resonant frequency
 - Trade-off between Bandwidth and Peak Sensitivity
- High power (Advanced LIGO level) ...

 Detuned Fabry-Perot cavity with continuous pumping: radiation pressure depends on mirror position ⇒ "optical spring"

Australian-Italian Workshop on GW Detection

Yanbei Chen

- Detuned Fabry-Perot cavity with continuous pumping: radiation pressure depends on mirror position ⇒ "optical spring"
- Optical spring effect (*optical rigidity*) can shift pendulum resonance into interferometer's observation band
 - Classical dynamics

- Detuned Fabry-Perot cavity with continuous pumping: radiation pressure depends on mirror position ⇒ "optical spring"
- Optical spring effect (*optical rigidity*) can shift pendulum resonance into interferometer's observation band
 - Classical dynamics
 - Enhancement in Quantumnoise-limited sensitivity around resonance; surpassing the *Standard Quantum Limit* of free test masses [Buonanno & Chen, 2001--2004]

Advanced LIGO: surpassing the SQL

Reference design: $I_{\rm c} \sim 800 \, {\rm kW}, \, M = 40 \, {\rm kg}.$

- Detuned Fabry-Perot cavity with continuous pumping: radiation pressure depends on mirror position ⇒ "optical spring"
- Optical spring effect (*optical rigidity*) can shift pendulum resonance into interferometer's observation band
 - Classical dynamics
 - Enhancement in Quantumnoise-limited sensitivity around resonance; surpassing the *Standard Quantum Limit* of free test masses [Buonanno & Chen, 2001--2004]
- Instability:
 - of course when we are locking on the other side of resonance
 - in fact even for this side!

Australian-Italian Workshop on GW Detection

Yanbei Chen

Intracavity readout schemes for GW interferometers

[concept: Braginsky et al. 1990s]

• It seems huge circulating optical power (~MW) and strong squeezing required for further sensitivity improvements, however ...

Intracavity readout schemes for GW interferometers

[concept: Braginsky et al. 1990s]

the optical-bar detector of Braginsky & Khalili

long cavity (transducer)	short cavity (<mark>readout</mark>)
Power: opt. spring resonance above detection band, no more!	Low power required because short cavity length

Summary

- "Standard Quantum Limit" is not fundamental for GW detection
- It can be surpassed, in theory, with
 - input/output optics (e.g., squeezed vacuum, optical filters)
 - modifications to interferometer configurations (e.g., speed meters)
 - modifications to test-mass dynamics (e.g., optical spring)
 - ...
- Optomechanical coupling can be used to "cap" the circulating power, while achieving higher sensitivity to gravitational waves.

Comments on the Optical Spring Effect

• Some effects of parametric coupling in high-power cavities

-	Test-Mass Mode	Spatial Mode of Optical Modulations	Resulting in
rigid	longitudinal motion	00	optical-spring resonance and instability
	pitch/yaw motions	01,10 (and higher, for non-spherical mirrors)	tilt instability [Sigg 2003]
deformable	higher modes (elastic)	higher optical modes	elastic parametric instability [Braginsky et al, UWA group]

- One can show in general that: power required to induce optical-spring resonance in the detection band is the same as that required to reach the Standard Quantum Limit
 - The does Parametric Instability implies enough sensitivity to probe quantized mirror tilt/elastic modes?
- Optical-spring resonance is unstable even when the quasi-static effect is restoring
 - Is there danger for extra tilt/elastic parametric instabilities?

Australian-Italian Workshop on GW Detection

Yanbei Chen

Detuned Signal Recycling + Input-Output Optics

- Optical resonance makes filter design more complicated.
- Filters must be used, if squeezing are to be taken advantage of at all frequencies
- Fully optimal filters can be worked out, but cannot be realized by sequence of FP cavities; sub-optimal schemes exist [Harms et al., 2003, Buonanno & Chen, 2004]
- Experimental demonstration (in MHz band) by Schnabel's group in Hannover [Chelkowski et al., 2005]

- Narrowband configuration very sensitive to optical losses. *More studies must be done.*
- Here we have assumed:
 - signal recycling loss
 0.1%
 - photodetector loss 0.1%
 - 4km filter, 20 ppm round-trip loss

What I've left out ...

- "Ponderomotive squeezer"
 - building squeezed states from opto-mechanical coupling
 - being carried out at MIT
 - T. Corbitt et al., in preparation
- "Intra-cavity Readout Scheme" proposed by Braginsky
 - *promises* to limit the power required in the interferometers
 - recent development Danilishin & Khalili, 2005
- Some recent work on detuned Sagnac interferometers
 - new type of optomechanical coupling
 - H. Müller-Ebhardt et al., in preparation
-