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Quantum mechanics in GW interferometers

• GW interferometers use light to measure relative motions of mirrors

• Need to measure position repeatedly in order to detect h(t), but
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“phasor diagram”
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Quantum mechanics does not allow us to do so! 
... at least not perfectly
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The Standard Quantum Limit
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t1 t2

t1: right after 1st measurement
t2: right before 2nd measurement

wavefunction widths of test mass

Heisenberg Uncertainty Relation

Standard Quantum Limit

A Standard Quantum Limit was formulated by Braginsky in the 1960s
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The Standard Quantum Limit
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t1: right after 1st measurement
t2: right before 2nd measurement

wavefunction widths of test mass

Heisenberg Uncertainty Relation

Standard Quantum Limit
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Shot & Radiation-Pressure Noises

• “Conventional Interferometer”: 
- Shot & Rad. Pres. Noises uncorrelated. [Add powers]
- Rad. Pres. Noise dominates at lower freq.’s; Shot Noise at higher freq.’s
- Total Noise never surpasses the Standard Quantum Limit
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Shot Noise 
Drops

Rad. Pres. 
Noise Grows

L = 4 km, M = 40 kg and γ = 100 Hz

γ : optical bandwidth of arm cavity

Standard Quantum Limit
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Standard Quantum Limit

• The Standard Quantum 
Limit is indeed right beyond 
Advanced LIGO (LIGO-II), 
with 40kg test mass.

• If we want to improve by 
another factor of 10 in 
“LIGO-III”, or “EGO”, either
- use 4000kg mirrors
- or surpass the SQL
- or some combination

• The Standard Quantum 
Limit can be surpassed, and 
ways of doing so will be of 
great interest for 3rd-
generation detectors!
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Figure from Cutler & Thorne
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Surpassing the SQL
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“Quantum Demolition”
Position eigenstates do not stay 

eigenstates during evolution --- being 
“demolished” continuously

“Quantum Non-Demolition”
Measure Quantities whose eigenstates stay eigenstates, e.g, momentum of free mass

Braginsky (1970s): Measure an observable that commutes at different times

t1+0

x

p

t2-0

? ? ?

But the “measurement” here is 
only “postulated”

in reality, they are executed by “photons”, 
which are quantized



Yanbei ChenAustralian-Italian Workshop on GW Detection

Quantum Noise in GW Detectors
[Caves, Walls & Milburn, Braginsky & Khalili, ...] 
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Quantum Noise in GW Detectors
[Caves, Walls & Milburn, Braginsky & Khalili, ...] 
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Quantum Noise in GW Detectors
[Caves, Walls & Milburn, Braginsky & Khalili, ...] 

10

xfree

amplitude

fluctuation

phase

fluctuation

E2

E1

I
1/2[I1/2E1/(M!

2)]

I
1/2X

E2

E1

Mẍ =
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SQL derived from Quantum Measurement Theory

• The output fields

• In Frequency domain, if we measure E2
out
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SQL derived from Quantum Measurement Theory

• The output fields

• In Frequency domain, if we measure E2
out

12

= Ein
2 (t) +

I
M

∫
t

0

dt′
∫

t
′

0

dt′′Ein
1 (t)

︸ ︷︷ ︸

From Optical Fields

+
√
I
[

DC
︷ ︸︸ ︷

x0 +
p0t

M
+G(t)

]

︸ ︷︷ ︸

From Free Test Mass

E
out

1 (t) = E
in

1 (t)

E
out

2 (t) = E
in

2 (t) +
√
Ix(t)

Noise Spectrum

Uncertainty
Principle

Sx =
1

I
SE2E2

︸ ︷︷ ︸

Shot

+
I

M2Ω4
SE1E1

︸ ︷︷ ︸

Rad. Press.

+
2

MΩ2
SE1E2

︸ ︷︷ ︸

Correlation

SE1E1
(Ω)SE2E2

(Ω) − S
2

E1E2
(Ω) ≥ h̄

2

Sx ≥ 2

√

(

1

I
SE2E2

)(

I

M2Ω4
SE1E1

)

≥
2h̄

MΩ2
≡ S

SQL
x

In Absence of Correlations...
(e.g., vacuum input state)



Yanbei ChenAustralian-Italian Workshop on GW Detection

Surpassing the SQL in a Michelson interferometer

• The Standard Quantum Limit only exists for specific 
readout scheme and input state

• SQL can be circumvented when either of the above 
are modified

- modification of input state: frequency dependent 
squeezing

- modification of readout scheme: frequency 
dependent detection
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Surpassing the SQL in a Michelson interferometer

• The Standard Quantum Limit only exists for specific 
readout scheme and input state

• SQL can be circumvented when either of the above 
are modified

- modification of input state: frequency dependent 
squeezing

- modification of readout scheme: frequency 
dependent detection

• Both require frequency dependent rotation of 
quadratures, which can be realized by detuned 
Fabry-Perot Cavities. [Kimble et al., 2001; Appendix 
of Purdue & Chen, 2002]

• Bandwidth of typical filter cavities ~ 100Hz; loss has 
to be lower than squeeze factor. [Kimble et al., 
2001]
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Surpassing the SQL in a Michelson interferometer
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[Kimble et al., 2001]
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Surpassing the SQL in a Michelson interferometer
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10 20 50 100 200 500 1000
f (Hz)

1×10-25

1×10-24

1×10-23

1×10-22

Variational: Lossless

10 dB

Í   = 2éÂ100 Hz    Ic   = 800 kW   10dB squeezing
20 ppm loss/round trip, 2 filters, each 4 km

total loss ~ 1%
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Other interferometer configurations: Speed Meters
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+
+
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−
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Cavity 1

Cavity 2
Extraction

Mirror

Photodetection

Braginsky & Khalili, 90s; Purdue & Chen, 02 Chen, 02; Danilishin, 03 

“Michelson Speed Meter” Sagnac Interferometer

They are “equivalent”, with optical responses characterized by Á and    Í

extra mirror

Photodetection
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Classical Speed Meters

• Speed Meter [for f<Á ]: transfer function ~ f, i.e., suppressed at low frequencies

• Sensitivity traces the SQL: Equal amount of Shot Noise and Radiation-Pressure Noise 
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Speed Meters:  Á   = 2éÂ130 Hz      Í   = 2éÂ100 Hz
Conventional:  Í   = 2éÂ100 Hz

     Ic   = 800 kW

Michelson Shot Noise

Michelson Rad Pres. Noise
Speed Meter Both Noises
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Quantum Noise of Speed Meters
[Purdue 2002; Purdue & Chen 2002]

• Low frequencies: ordinary homodyne 
detection & squeezed state with fixed 
squeeze angle will be optimal. [But this 
will not be the usual phase quadrature.]

• High frequencies: optimal detection 
quadrature will be phase quadrature 
again.
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A:  speed meter w/o filters
     1 [0] Xtra cavities
B:  position meter with filters
     2 Xtra cavities
C:  speed meter w/ filters
     3 [2] Xtra cavities

Ic   = 800 kW; 10dB squeezing; 20 ppm loss/round trip; 
2 filters: each 4 km;  total loss ~ 1%
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“Detuned” interferometers

• Invented by Drever & Meers

• Signal recycling cavity not resonant/anti-resonant with carrier

• Resonant to GWs with particular frequency

23



Yanbei ChenAustralian-Italian Workshop on GW Detection

“Detuned” interferometers

• Low-power regime, shot noise only:
- Tunable optical resonant frequency
- Trade-off between Bandwidth and Peak Sensitivity

• High power (Advanced LIGO level) ... 
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Modification of Test-Mass Dynamics by Radiation Pressure

• Detuned Fabry-Perot cavity with 
continuous pumping: radiation 
pressure depends on mirror 
position  ⇒ ”optical spring”
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Modification of Test-Mass Dynamics by Radiation Pressure

• Detuned Fabry-Perot cavity with 
continuous pumping: radiation 
pressure depends on mirror 
position  ⇒ ”optical spring”

• Optical spring effect (optical 
rigidity) can shift pendulum 
resonance into interferometer’s 
observation band
- Classical dynamics 
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Laser

Power-Recycling
Mirror

Signal-Recycling
Mirror

The GEO600 Interferometer

Ic ∼ 10 kW, M ∼ 5.6 kg
fopt.spring ∼ 50 Hz
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Modification of Test-Mass Dynamics by Radiation Pressure

• Detuned Fabry-Perot cavity with 
continuous pumping: radiation 
pressure depends on mirror 
position  ⇒ ”optical spring”

• Optical spring effect (optical 
rigidity) can shift pendulum 
resonance into interferometer’s 
observation band
- Classical dynamics 
- Enhancement in Quantum-

noise-limited sensitivity around 
resonance; surpassing the 
Standard Quantum Limit of free 
test masses [Buonanno & Chen, 
2001--2004]
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Ic ∼ 800 kW, M = 40 kg.
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Modification of Test-Mass Dynamics by Radiation Pressure

• Detuned Fabry-Perot cavity with 
continuous pumping: radiation 
pressure depends on mirror 
position  ⇒ ”optical spring”

• Optical spring effect (optical 
rigidity) can shift pendulum 
resonance into interferometer’s 
observation band
- Classical dynamics 
- Enhancement in Quantum-

noise-limited sensitivity around 
resonance; surpassing the 
Standard Quantum Limit of free 
test masses [Buonanno & Chen, 
2001--2004]

• Instability:
- of course when we are locking 

on the other side of resonance
- in fact even for this side!
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Intracavity readout schemes for GW interferometers
[concept: Braginsky et al. 1990s]

• It seems huge circulating optical power (~MW) and strong squeezing 
required for further sensitivity improvements, however ...
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 A “cavity length contradiction”

Long cavity: larger GW-induced relative motion: x~Lh

Short cavity: keeping bandwidth, requires less circulating power for same
                    displacement sensitivity

Long Cavity Wins, but HIGH POWER!!

ΔL~Lh

L

N  bounces

X for the same circulating power, 
X sensitivity increase with N1/2

but N cannot be too big, 
because NL/c must be smaller 
than PGW
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Intracavity readout schemes for GW interferometers
[concept: Braginsky et al. 1990s]
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long cavity (transducer) short cavity (readout)

Power: opt. spring resonance 
above detection band, no more!

Low power required because short 
cavity length

Optical Spring
(rigid below resonant freq)

G

Xfar LhXlocal Lh

reference
mirror

the optical-bar detector of Braginsky & Khalili
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Summary

• “Standard Quantum Limit” is not fundamental for GW detection

• It can be surpassed, in theory, with
- input/output optics (e.g., squeezed vacuum, optical filters)
- modifications to interferometer configurations (e.g., speed meters)
- modifications to test-mass dynamics (e.g., optical spring)

- ...

• Optomechanical coupling can be used to “cap” the circulating power, while 
achieving higher sensitivity to gravitational waves.
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Comments on the Optical Spring Effect

• Some effects of parametric coupling in high-power cavities

• One can show in general that: power required to induce optical-spring 
resonance in the detection band is the same as that required to reach the 
Standard Quantum Limit
- The does Parametric Instability implies enough sensitivity to probe 

quantized mirror tilt/elastic modes?
• Optical-spring resonance is unstable even when the quasi-static effect is 

restoring
- Is there danger for extra tilt/elastic parametric instabilities?
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Test-Mass Mode
Spatial Mode of 

Optical Modulations
Resulting in ...

longitudinal 
motion

00
optical-spring resonance and 

instability

pitch/yaw motions
01,10 (and higher, for 
non-spherical mirrors)

tilt instability [Sigg 2003]

higher modes 
(elastic)

higher optical modes
elastic parametric instability

[Braginsky et al, UWA group]
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Detuned Signal Recycling + Input-Output Optics

• Optical resonance makes filter design more complicated.

• Filters must be used, if squeezing are to be taken advantage of at all frequencies

• Fully optimal filters can be worked out, but cannot be realized by sequence of FP 
cavities; sub-optimal schemes exist  [Harms et al., 2003, Buonanno & Chen, 2004] 

• Experimental demonstration (in MHz band) by Schnabel’s group in Hannover 
[Chelkowski et al., 2005]
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• Narrowband configuration 
very sensitive to optical 
losses. More studies must 
be done.

• Here we have assumed:
- signal recycling loss 

0.1%
- photodetector loss 0.1%
- 4km filter, 20 ppm 

round-trip loss
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What I’ve left out ...

• “Ponderomotive squeezer”
- building squeezed states from opto-mechanical coupling
- being carried out at MIT
- T. Corbitt et al., in preparation 

• “Intra-cavity Readout Scheme” proposed by Braginsky
- promises to limit the power required in the interferometers
- recent development Danilishin & Khalili, 2005

• Some recent work on detuned Sagnac interferometers
- new type of optomechanical coupling
- H. Müller-Ebhardt et al., in preparation

• .... 
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