LIGO-G050522-00-Z

Juri Agresti^{1,2}, Erika D'Ambrosio¹, <u>Riccardo DeSalvo</u>¹, Danièle Forest³, Patrick Ganau³, Bernard Lagrange³, Jean-Marie Mackowski³, Christophe Michel³, John Miller^{1,4}, Jean-Luc Montorio³, Nazario Morgado³, Laurent Pinard³, Alban Remillieux³, Barbara Simoni^{1,2}, Marco Tarallo^{1,2}, Phil Willems¹

1. Caltech/ LIGO

2. Universita' di Pisa

TEMon

0.03

0.02

3. LMA Lyon/ EGO 4. University of Glasgow Gingin's Australia-Italia workshop on GW Detection

LIGO-G050XXX-00-R

Why mesa beams

- Detectors limited by fundamental thermal noise
- Spectral density scales as 1/wⁿ
 - » n = 1 for the dominant coating losses
- Diffraction prevent dramatically increasing beam size
- Gaussian beams sample only a few percent of the mirror's surface

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection

Why mesa beams

0.1

0.05

Wider, flatter, and steeper edges beams

Better average over the mirror surface

depress thermal noise without compromising diffraction losses

3

Mesa Beam

Optimisation produces the mesa beam

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection

4

The test Cavity

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection

8

"Mexican hat" mirrors

- LMA laboratories provided three mirror prototypes
- All affected with several imperfection
 - » Due to the excessively small mirror size
- Beam Tested one with a not negligible slope on the central bump

• First simulated using paraxial approximation to evaluate how mirrors with these imperfections would affect the resonant beam

FFT simulations

cm

1.5

0.5

0

-0.5

-1.5

 The slope on the central bump can be corrected applying the right mirror tilt

TEM

0.03

Tilts of Spherical Mirrors

LIGO-G050XXX-00-R

LIGO

Gingin's Australia-Italia workshop on GW Detection ¹²

MH Cavity Alignment

- Tilt on MH mirrors destroys cylindrical symmetry
- -> resonant beam phase front changes with the alignment
- Folded cavity: no obvious preferential plane for mirrors alignment
- -> very difficult align within required Orad precision
 => TEM₀₀ difficult to identify

TEMon

0.03

0.02

LIGO

Experimental Results

- No stable Mesa beam profile was initially acquired
- Higher order modes were found very easily

TEMon

0.03

0.02

Results - other HOM

Diffraction around beam baffle eliminated

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection ¹⁶

Chasing the TEM₀₀

- Apply FP spectrum analysis:
- TEMs identification and coupling analysis
- Non-symmetric spacing: as expected
- TEM₀₀ is the first of the sequence, independently of its profile appearance

Chasing the TEM₀₀

LIGO

2-dimensional nonlinear regression:Definitively not Gaussian

Singin's Australia-Italia workshop on GW Detection ¹⁸

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection

20

etection

Systematic and next steps

- Any attempt to "drive" the beam in a centered configuration failed
- cylindrical symmetry is definitely not achievable
- FP spectrum analysis: peaks are separated enough -> we are observing the actual TEM₀₀cavity modes

TEMon

Cause of cylindrical symmetry loss

Mechanical clamping stress deform the folder and input mirrors

LIGO

- ~ 60 nm deformation -> three times the height of the MH central bump
- Marked astigmatism is induced
- FFT simulation with actual IM profile confirm problem

0.01

-0.01

-0.02

-0.03

-0.04

Solving the problem

- Flat mirrors too thin (1 cm)
- Temporary fix: Distributed stress with aluminum rings
- Thicker substrates ordered

LIGO-G050XXX-00-R

108 =

90

Other improvements

- Improved atmospheric isolation
- Better stability 'in lock'

Passing from Side to Dither lock

LIGO-G050XXX-00-R

LIGO

Gingin's Australia-Italia workshop on GW Detection ²⁴

Improving Alignment

The reference during alignment was changed from the intensity profile to the transverse mode spectrum

Gingin's Australia-Italia workshop on GW Detection

The First Mesa Beam

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection ²⁶

Non-Linear Fit X

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection 27

Non-Linear Fit Y

Alignment

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection²

29

Best Mesa Beam

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection ³⁰

Best Mesa Beam

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection ³

Tilt Sensitvity

- Controllability of beam is key
- Decided to first investigate tilt sensitivity
- Tilt MH mirror about a known axis

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

axis

LIGO

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

LIGO-G050XXX-00-R

33 Gingin's Australia-Italia workshop on GW Detection

TEMon

5 -5

0.03

0.02 0.01

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection ³

Summary

- We are able to produce acceptable flat-topped beams with imperfect optics
- We have begun to make a quantitative analysis of mesa beam
 - » Beam size appears correct
 - » Tilt sensitivity shows correct trends but less than expected by a factor of two

Further Work With This Set Up

- Improve profile using new, stiffer flat mirrors
- Repeatability/ stability vacuum operations
- Complete tilt sensitivity measurements
- Test other two MH mirrors mirror figure error tolerances
- Long term design and build half of a nearly concentric MH Cavity

Concentric cavity MH mirror profile

LIGO-G050XXX-00-R

Gingin's Australia-Italia workshop on GW Detection

31

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.