Network Analysis of Gravitational Waves

Linqing Wen

Max Planck Institut fuer Gravitationsphysik
Albert-Einstein-Institut
Golm, Germany

Outline

- Overview
 - role of AIGO
- Our Proposals
 - to deal with realistic problems

- Application to GW Network Analysis
 - Veto/localization
 - Test of GR

Interferometric GW Detectors

Network Analysis

- Detection/Confidence
- Source Localization
 - time-delay triangulation
- Waveform Extraction
- Test GR

WHAT IS THE BEST WAY TO COMBINE ALL AVAILABLE NETWORK DATA?

My work: 1. null-stream method for veto/validation/localization

2. stable solution for detection/localization/waveform extraction

Challenge: Burst GWs

- The unknown: Burst GWs
 - » e.g. Core collapse in supernovae / GRBs, BH-BH merger
 - unknown or not well modelled
 - » possible very short bursts
 - tens of milliseconds
 - high frequencies (>500 Hz)
 - » possible EM counterparts
- Our methods are NOT restricted to burst GWs
 - » more information can only make them work better
 - » burst GW is the main challenge
 - BH-BH merger GW used in examples

Detector Response to GWs

Linear response to the two GW polarizations

$$h_i(t) = f_i^+(t) h_+(t) + f_i^X(t) h_X(t) + n_i(t)$$

$$f^{+X}_{i}(t)$$
 depend on

- detector location and orientation
- source direction, polarization angle
- frequency-dependent noise n_i
- Sensitivity characterized by $\sqrt{f_i^{+2}(t)+f_i^{X2}(t)}$

Sky Sensitivity

Sky Coverage

$$\frac{\rho_{GEO}}{\rho_{LIGO}}$$
 at f=1 kHz

Detection volumn $\propto \rho^3_i \times \text{fraction of sky}$

Sensitivity Comparison

SNR:
$$\rho_i \propto \sqrt{\frac{f_i^{+2} + f_i^{X2}}{S(f)}}$$

- For mis-aligned detectors
 - At 1 kHz, at ~15% sky area, GEO is more sensitive than LIGO I (VIRGO -> higher %)
 - but detection volumn is much smaller due to smaller SNR
 - not by choice

Detection Volume for AIGO

Detection volume $\propto \rho_N^3 \times \% \text{sky} \propto \left(\sum_i^N \rho_i^2\right)^{3/2} \times \% \text{sky}$

- AIGO
 - » antenna aligned with LIGO -> ~ same % sky
 - » ½ LIGO SNR (with much smaller budget !)
- AIGO+one LIGO(LLO | LHO)
 - » detection volume ~1.4 x one LIGO
- AIGO+two LIGO (LLO&LHO)
 - » detection volume ~1.2 x two LIGOs

Source Localization: Time-delay Triangulation

Arrival time delay of GW at two detectors τ_{ii} -> determination of a cone in the sky

GEO-VIRGO: 3 ms

 $\tau_{\rm max} \begin{array}{c} {\rm LLO\text{-}\,LHO} \quad : 10 \; {\rm ms} \\ {\rm LHO\text{-}\,(GEO,VIRGO,TAMA),\, LLO\text{-}(GEO,VIRGO),\, TAMA\text{-}AIGO} \colon 24\text{-}26 \; {\rm ms} \\ {\rm TAMA\text{-}(LLO,\, VIRGO)} \colon 30\text{-}32 \; {\rm ms} \end{array}$

AIGO-(GEO, VIRGO, LHO, LLO): 37-42 ms

AIGO-LLO offers the longest baseline of 42 ms

$$\delta \alpha \propto \left| \frac{\lambda_{\text{GW}}}{\tau_{\text{max}}} \right| \frac{1}{\rho_N}$$

longer baseline-> better directional resolution

higher network SNR-> better resolution

limited by sampling resolution

diffraction limit + Arnard et al 2003

Source Localization with AIGO

$$\delta \alpha \propto \tau_{\text{max}}^{-1} \rho_{N}^{-1}$$

- AIGO+LLO vs LHO-LLO
 - » can be a factor of a few better!
 - $\rightarrow \tau_{\text{max(A-L)}}/\tau_{\text{max(H-L)}}\sim 4$, $\rho_{N(\text{A-L})}/\rho_{N(\text{H-L})}\sim 0.8$
 - » at max(L1), $\tau_{\rm AL}$ is around maximum, but not $\tau_{\rm L1\text{-}H1}$

Summary I

- Network analyses are CRUCIAL
 - AIGO can help
 - better detection sensitivity
 - AIGO-LIGO helps a factor of 40 % increase in detection volume of one LIGO)
 - AIGO-LLO-LHO -> 20% increase in d.v. of LLO-LHO
 - localization
 - In theory, AIGO-LLO can be a few times better in 1-d angular resolution than LLO-LHO pair
 - veto against artifacts, test of GR, better waveform extraction, etc
 - -> our methods

Veto Against Artifacts using Null-Stream Method

(Reference: Wen, L. and Schutz, B. 2005, CQG, 22, S1321)

FAQ

Are "coincident" events in multi-detectors consistent with each other in both phase and amplitude as real GWs?

The Null-Stream Method

For triggered coincident events:

 Construct "null stream" as a particular linear combination of time-series data from multiple detectors

Real GW signals are cancelled out in the null stream

 Test for consistency by comparing the null-stream with expected noise distribution

Principle

Response of detector to GWs is linear

$$h_1(t) = f_1^- h_-(t) + f_1^\times h_\times(t) - n_1(t)$$

$$h_2(t + \tau_{12}) = f_2^- h_-(t) + f_2^\times h_\times(t) - n_2(t)$$

$$h_3(t - \tau_{13}) = f_3^- h_+(t) + f_3^\times h_\times(t) + n_3(t).$$

Null Stream

- = linear combination of data with GW signals cancelled out
- Three possibilities:
 - 2 co-located detectors: $f_1^{+x} = f_2^{+x}$
 - 2 perfectly aligned detectors: $f_1^+ f_2^x = f_2^+ f_1^x$
 - 3-detectors at different sites:
 - 2 unknowns, 3 linear equations (for a given source direction)

Null-Stream method: (two co-located detectors H1-H2)

$$N(t) = h_1(t) - h_2(t)$$

$$\sigma_{N_k}^2 = \sigma_{1k}^2 + \sigma_{2k}^2$$

$$P_{k} = \sum_{k=1}^{N} \frac{2N_{k}^{2}}{\sigma_{N_{k}}^{2}}$$

Gaussian noise-> Chi-square test -(t,f) band limited

Three-Detector Case

Data

$$h_1(t) = f_1^+ h_+(t) - f_1^\times h_\times(t) + n_1(t)$$

 $h_2(t + \tau_{12}) = f_2^+ h_+(t) - f_2^\times h_\times(t) + n_2(t)$
 $h_3(t + \tau_{13}) = f_3^- h_+(t) + f_3^\times h_\times(t) + n_3(t)$.

- Null Stream=linear combination of data
 - signal exactly cancelled out (e.g., Guersel & Tinto 1989)
 - coefficients: polarization angle independent

$$A(\alpha, \delta, t) = A_{23}h_1(t) - A_{31}h_2(t + \tau_{12}) + A_{12}h_3(t + \tau_{13})$$

$$A_{ij} = (f_i^+ f_j^{\times} - f_j^+ f_i^{\times}).$$

Two -Detectors: L1-H1 (+AIGO), nearly aligned

 Nearly perfectly aligned antenna beam pattern:

$$A_{12} = f_1^- f_2^\times - f_2^+ f_1^\times \sim 0$$

- Null Stream (2-detector)
 - residual signal amplitude proportional to $\,A_{\rm 12}\,$
 - minimize rms residual signal amplitude at source direction

$$A(\alpha, \delta, t) = A_2 h_1(t) - \cos(\xi_1 - \xi_2) A_1 h_2(t + \tau_{12})$$

- Find minimum signal contribution in the null-stream by searching over a sky region
 - maximize the probability of data given noise model
 - minimize variance of normalized residual in f-domain
 - Compare it with expected noise distribution
 - $-(P(\alpha, \delta) \text{ follows } \chi^2_{2N} \text{ distribution})$

$$P(\alpha, \delta) = 2 \sum_{k=1}^{N} \frac{A_k^2(\alpha, \delta)}{\sigma_k^2}$$
(3-detector:) $\sigma_k^2 = A_{23}^2 \sigma_{1k}^2 - A_{31}^2 \sigma_{2k}^2 + A_{12}^2 \sigma_{3k}^2$
(2-detector): $\sigma_k^2 = A_2^2 \sigma_{1k}^2 + A_1^2 \cos^2(\xi_1 - \xi_2) \sigma_{2k}^2$

Example: localization and veto

Sky-Map of Null-Stream Statistic for Real GW Events localization and consistency check

Probability of $P(\alpha, \delta)$ is consistent with noise vs sky directions

1. LLO-LHO-GEO: SNR \sim 55, d=1 Mpc

2. LLO-LHO: SNR =35, same data

Wen, L. and Schutz, B. 2005, CQG, 22, S1321

Glitches

with "inconsistent" amplitudes only: h(H1) *= 0.5, h(G1) *=2

Probability to be null:

$$\text{Prob}_{\text{max}} < 2 \times 10^{-16}$$

Example: localization with AIGO

Localization: L1-H1 vs L1-A1

In this example: angular resolution of L1-A1 is similar to L1-H1

^{*} limited by timing resolution (~3 grid size, 0.25 deg/grid)

AIGO II -LIGO II (LLO-LHO) localize BH-BH merger at 150 Mpc (SN=20)

Stable solutions for the network (work in progress)

AIGO-VIRGO (blue-green curve) help obtain better (nearly perfect) waveforms and source direction

inclusion of Virgo/AIGO: factor of 2-4 improvement

SNR=55 (~ 30, 30, 4, 0.6, 37, 13)

Test of GR

Test Scalar-Tensor Gravity vs GR:

Another advantage of having more GW detectors!

Gravitational-Wave Polarization

Figure from Cliff W., 2001, Living Review

(c)

- 4 detectors needed to get null stream if true:
- -no null-stream for 3 detectors
- -put constrains on the breathing mode

Null-Stream method for H1-H2 Data Implemented

Working group

- P. Ajith* (AEI, Hanover)
- Martin Hewitson (AEI, Hanover)
- Ik Siong Heng (Glasgow)
- Linging Wen (AEI, Golm)

Status

- H1-H2 S4 data
 - Search code implemented
 - Efficiency/false alarm studies in the playground data and tuning of parameters finished

•at 1% FAP, >80 % success rate for SNR=10-20

Conclusion

- A null-stream method proposed for a network of detectors
 - veto against transient glitches /GW localization
 - independent of GW waveforms
 - implemented for current GW data analyses of H1-H2
 - test GR
 - AIGO can help detection/veto/test of GR/waveform extraction
- Work in progress:
 - a robust method to combine network data optimally
 - » detection/waveform extraction/localization
 - » arbitrary number of detectors