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Outline

We outline a model that describes the relationship between an
observer-detector
and transient astrophysical events occurring throughout
the Universe

We demonstrate how the signal from an astrophysical GW
background evolves with observation time.

There may be a regime where the signature of an
astrophysical population can be identified before a single local
event occurs above the noise threshold.



Assumptions

Transient “events” are defined as cataclysmic
astrophysical phenomena where the peak emission
duration is much less than the observation time.

Supernovae (GWs and EM) GWs - milliseconds
GRBs (gamma rays) (seconds-minutes)

Double NS mergers (GWSs) seconds ?



Events in a Euclidean Universe
4
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The events are independent of each other, so their
distribution is a Poisson process in time: the
probability for at least one event to occur in this
volume during observation time T at a mean rate R(r)
at constant probability is given by an exponential
distribution:

p(n>LR(r),T)=1-e " =¢



Probability with a speed?

The corresponding radial distance, a decreasing

function of observation time, defines the PEH:

r, (T)= (3N, /4ar,)*T 7

The speed at which the horizon approaches the observer
the PEH velocity—is obtained by differentiating r. (1) with
respect to 17

V. " (T)=N_/36ar,T*?
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Using Poisson statistics and knowledge of the event rate we can define a PEH :

“The minz ( T,, ) for at least 1 event to occur at a 95 % confidence level”

0.0001 0.01 1.0 100.0
observation time (days)
( see D.M.Coward & R.R.Burman, accepted MNRAS, astro-ph0505181)



PEH and GRBs

The probability “tail” of the GRB redshift distribution — physically
it represents the local rate density of events (presently not well
known).

The PEH algorithm is very “sensitive” to the tail of the
distribution because it includes the temporal evolution of the low
probability events.

By fitting a PEH model with the local rate density modeled as a
free parameter, the method can be used to estimate the local
rate density.
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First application of the PEH concept to GRB redshift data
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Figure 8. Filled diamonds show the closest events as a function
of observation time for the 34 GRBs for which the redshift is
lknown with reasonable confidence; the solid square is the highly
under-luminons GHB 980425, The observations span a 7-vr pe-
riod, starting from the first redshift measurement in 1997 Febru-
arv and continuing to 2004 July. The solid curve shows the PEH.
excluding the outlier GRB9S0425, assuming a Hat-A (0.3, 0.7) cos-
mology and a source rate evolution based on the star formation
rate model labelled SF1 in Porciani & Madan (2001). A local rate
density ro == 0.8 }'1“' ':}1:n:_:g is used to fit to the redshift data
for the classical GRBs for the first 4-5 yr of observation. (The



= Running minima of z (Toys) define a horizon approaching the detector

= The horizon’s initial approach is rapid for around the first 100 events

= The horizon slows down as a function of Ty
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Poisson process - probability distribution of the number of occurrences of an
an event that happens rarely but has many opportunities to happen

pn=M"e™M
rl

P(at least 1 event) =1 —¢€ M

If we set a 95% confidence level
0.95=1-¢ RE@T
-R(2)T = In(0.05)
R(2)T=3

additionally P(0) = e ™M

, where M=R(@2) T

M = mean number of events
R(z) = rate of events throughout
the Universe

T = observation time

30

redshift, =




Simulating the PEH
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Ficure 7. Simulation illustrating the rapid motion of the PEH
for the first few tens of seconds of observation time, and a model
curve with a probability threshold £ = 0.95 for at least one event
to ocour at a distance less than that of the PEH. We assume
a universal cumulative event rate of about 25 s~ 1 as seen in our
frame, comparable to the NS birth rate integrated throughout the
Universe, a flat-A (0.3, 0.7) cosmology and a souree rate evolution
locked to the SFR model labelled SF2 in Porciani & Madau (2001)



The “probability event horizon” for DNS

mergers
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DNS mergers are
key targets for
LIGO and
Advanced LIGO

The horizon represents the radial
boundary for at least one DNS
merger to occur with 95%
confidence.

Upper and lower uncertainties in the
local DNS rate densities respectively
are taken from (Kalogera et al. 2004).



Suboptimal filtering methods in time domain

k+N-1

2
a) Norm Filter yk = Z Xi Determines signal energy in a moving
- Window of size N

%1 Determines mean of data in a moving

b) Mean Filter window of size N

ROBUST - similar efficiencies for different signals — e.g. Gaussian pulses, DFM
e Important as waveforms not known accurately

e Only a priori knowledge — short durations the order of ms

ASSUMPTION - data is whitened by some suitable filter

Arnaud at al. PRD 67 062004 2003, Arnaud at al. PRD 59 082002 1999
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Monte-carlo generation of fs ~16384 Hz
signals in Gaussian Noise Gaussian Pulse ~ ms

!

Down sample data to 1024 Hz |_>

Apply initial thresholding to
data windows of size 2048

|

Pass filter across window — if SNR above pre-defined threshold — Event Trigger
Estimate time of arrival of candidate — systematic errors

!

Determine position of candidate in time-series
Find amplitude of candidate

!

Data Mining - apply PEH in search
for Astrophysical populations




amplitude

Non-Gaussian noise model — Mixture Gaussian

¥(m,o)=(1-P)¥,(0,0,)+P¥,(0,0,)

ar Y, and ¥, are Gaussian

o ;

"l ! distributions

2

4 Weighting factor: P <<1
P <(10)

o E = Ertzite 1 +'ﬂ
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Allen at al. PRD 65122002 2002, Finn S. PRD 63 102001 2001
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PEH for the signal-noise-ratio for LIGO

~_—~"1 This analysis shows that

""73 the detectability of a GW

i stochastic background
and individual DNS
mergers are inexorably
linked to the observer
and to the sensitivity of
the detector
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Future Work

* We plan to test the PEH concept by developing a PEH filter and
applying it to simulated data

e Inject simulated signals in real data to test filter performance.

 Utilize the PEH filter in the frequency domain.
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