

Inverted pendulum studies for seismic attenuation

Ilaria Taurasi

University of Sannio at Benevento, Italy

September 20, 2005

Supervisor Riccardo De Salvo Mentor Calum Torrie

LIGO-G050485-00-R

- Seismic noise is one of the most important noise sources that will affect the detector at low frequencies
- There is the necessity to design an adequate isolation system

An inverted pendulum (IP) is implemented to provide attenuation at frequencies extending down to the microseismic peak and to realize a mean to position the entire system without requiring large force

LIGO Inverted Pendulum

IP is a horizontal pre- isolation stage with ultra-low resonant frequency, typically 30 mHz

LIGO IP in ANSYS: First step

• Draw in each detail the individual legs of the inverted pendulum in Solid Solid Works[©]

Second step

• Import the pendulum in Ansys[©]

LIGO

First operation: meshing

- Ansys is ageneral purpose finite element modeling
- The body can be sub-divided up into small discrete regions known as **finite elements**
- Calculate stress and strain propagated through the mesh

Second step

Import the pendulum in Ansys[©]

LIGO

Second operation: convergence test to check that the model finds stable resonance frequencies

Convergence test for the first 6 frequencies up to 22 MHz

NO problem of convergence

Third step

• Assembly 4 legs into in Solid Works

Fourth Step

• Solve model and analyze first 20 modes in ANSYS

🔥 ANSYS Workbench [ANSYS University Advance	ĴI				
[Project] G COmpleto_table_top [Simulation	n] ×				
File Edit View Insert Units Tools Help 🛛 🎬	💕 📰 🔳 🥝 🔢 Data 🦸 Soly	e \Lambda 💽 📾] 🏷 -	🐨 🏘 🏋 💽 💽 🕻	🖪 🚳 - 🔓 🕂 🍳 🔍	🍭 🔍 🛝 🐘 🗖 -
🖉 🔹 🖓 Selection 👻 🍚 Visibility	✓ Suppression ✓				
Frequency Finder 🔂 🧟 Stress 🗸 🔍 Strain 🗸 🧐	Deformation -				
Outline for "COmpleto table top"					
Project			-		
🔄 🚱 Model 🧧	NSYS Solution Status	×	3		
🗄 🗸 🖓 Geometry	overall Progress				
E Contact					
Mesh	reparing the mathematical model				
Environment					
Eixed Support	Stop Solution				
Solution					
E Frequency Finder					
🖉 1st Frequency Mode Ir					
2nd Frequency Mode In F	e				
VIT 3rd Frequency Mode In R	3				
Sth Frequency Mode In R	a				
th Frequency Mode In R	a		2014		
🦚 Equivalent Elastic Strain		- 10 m			
👘 👰 Equivalent Elastic Strain 2					
🔬 👰 Equivalent Elastic Strain 🤅					
Contraction Contraction Contraction					
Equivalent Elastic Strain :					
7th Frequency Mode In R	a				
💞 8th Frequency Mode In R	a				
🛷 🦚 9th Frequency Mode In R	a				
🖉 👰 Equivalent Elastic Strain 7					
Reguivalent Elastic Strain 8					
10th Erecuency Mode In					
200 Toth Frequency Mode In	2				
12th Frequency Mode In	2				
200 13th Frequency Mode In	ર -				
👘 14th Frequency Mode In	د				
🗸 🖓 15th Frequency Mode In					
	<u></u>				
Details of "Frequency Finder"	_				
- (- Uptions					
Max Modes to Find 20					
LIMIC Search to Range No					

Table normal modes

LIGO Table normal modes (2)

• Frequency vs load: I changed the mass of the table on the top of the 4 legs

- Longitudinal and trasversal frequencies are identical
- Zero frequency point is the same for all 3 main modes

Validation

LIGO

Ansys results are fully validated by the measurement results

LIGO Rigid leg resonances

Eight degenerate resonances: each leg has 2 resonances

LIGO Rigid leg resonances

Eight degenerate resonances: each leg has 2 resonances

1ax

LIGO Rigid leg resonances (2)

Mass of counter weight: 1.212 Kg		Resonance frequency with counterweight	Resonance frequency without counterweight	
	Diameter of small flex joint: 1.5 mm	~110.6 Hz	~122 Hz	
	Diameter of small flex joint: 3 mm	~178.3 Hz	~235.3 Hz	

LIGO Rigid leg resonances (2)

LIGO-G050485-00-R

LIGO Rigid leg resonances (3)

Mass of counter v	weight: 1.212 Kg	Resonance frequency with counterweight	Resonance frequency without counterweight		
	Diameter of small flex joint: 1.5 mm	~110.6 Hz	~122 Hz		
	Diameter of small flex joint: 3 mm	~178.3 Hz	~235.3 Hz		
Ansys shows that counter weight doesn't reduce significantly the resonance, that are LIGO-G050485-00-R dangerous. They can be damped					

LIGO Solution: Eddy current dampers

Measured and succesfully damped in a prototype without counter weight

Eddy current dampers

Before installation t = 4.3 s

After installation t = 35 ms

LIGO-G050485-00-R

time [s]

LIGO Banana leg resonances

LIGO Banana resonances (2)

Mass of counter weight: 1.212 Kg		Resonance frequency with counterweight	Resonance frequency without counterweight	
	Diameter of small flex joint: 1.5 mm	~210.6 Hz	~415 Hz	
	Diameter of small flex joint: 3 mm	~253.3 Hz	~424 Hz	

LIGO Banana resonances (3)

- Higher frequencies
- Resonances move the head of the leg

The damper will be even more effective

LIGO Spring box resonances

LIGO-G050485-00-R

LIGOSpring box resonances(2)

Spring box effective mass 320 Kg

- Leg magnetic dampers may be still effective
- Complementary resonant dampers may be required

LIGO IP Transfer Function

Output: monitor resulting movement

LIGO IP Transfer Function

- The aim is to determine the counter weight that neutralize the percussion point effect of the legs
- Prototype measurements indicate that the transfer function saturates at 80 dB without counterweight
- A proper counter weight should allow 100 dB attenuation

- Find a counter weight which allow an attenuation of 100 dB
- Export TF to Sym Mechanic model

- Riccardo De Salvo and Calum Torrie for their help, encouragments and patience
- Juri Agresti and Virginio Sannibale for answering my quick questions
- Innocenzo Pinto for the opportunity he gave me

The sun of California...

LIGO-G050485-00-R