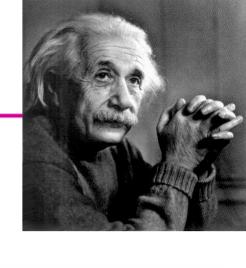
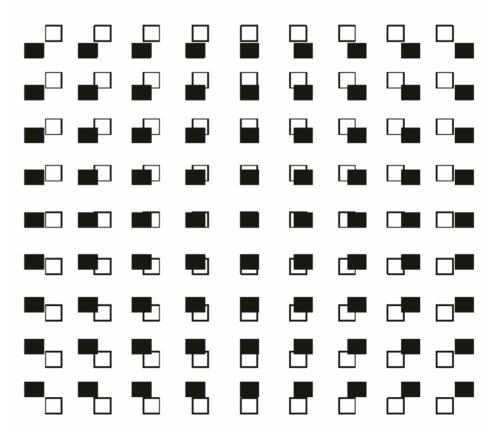


David Shoemaker 30 August 05

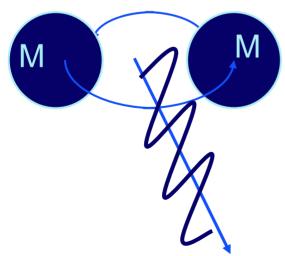


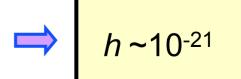

What is LIGO?

- Laser Interferometer Gravitational-wave Observatory
- LIGO's mission is to use Gravitational Waves as a completely new window on to the universe
 - » Analogous the change in perspective made when going from optical observation to cosmic radio waves, or x-rays – an entirely new view
- GWs are produced by accelerating mass: e.g., supernovae
 - » The biggest signals made by the most violent, extreme events in the universe
 - » GWs are not attenuated by matter can see through dust, intervening galaxies, dark matter
- GWs are ripples in space-time to be observed as variations in the apparent distance between objects as the wave passes
 - » Effect is tiny....

LIGO Gravitational Waves

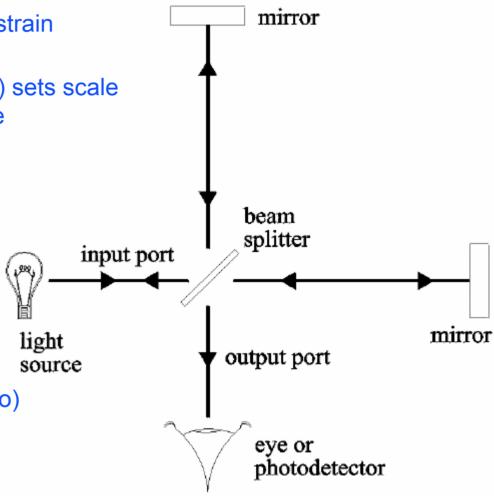
- Einstein's General Theory of Relativity predicts gravitational radiation
 - » Analogous to electromagnetic radiation – transverse waves, carrying energy, speed of light, due to accelerations of 'charge'
 - » Amplitude measured as the dimensionless strain in space, $h = (\Delta L)/L$
- Quadrupolar x axis shrinks while y axis grows, then vice versa, as wave passes





Gravitational Waves

- A very weak effect: only astrophysical events make presently conceivably measurable effects
- A 'binary inspiral' of two solar-mass stars at the Virgo cluster (18 Mpc away)
 will cause a change in apparent length of a meter stick of ~10-21 meters
- ...a 10m stick would see a change of 10^{-20} m, 100m $\rightarrow 10^{-19}$ m...



$$M \approx 10^{30} \text{ kg}$$
 $R \approx 20 \text{ km}$
 $f \approx 400 \text{ Hz}$
 $r \approx 10^{23} \text{ m}$

Interferometry

- Rainer Weiss in 1972:
- Use laser interferometry to sense the strain for the expected quadrupolar signal
- Wavelength of light (typically 1 micron) sets scale for measurement 'ruler'; split the fringe
- However, an instrument of ~4km is needed to have an astrophysically interesting sensitivity
- Light must travel in a good vacuum to avoid scintillation
- Need two instruments, separated, to claim detection (and get directional info)
- → Detector must be big!

peam splitte

LIGO Hanford Observatory [LHO]

2 km + 4 km interferometers in same vacuum envelope

LIGO Livingston Observatory [LLO]
Single 4 km interferometer

- Two separated observatories for detection confidence, directional information
- Initial planned sensitivity just enough to plausibly see signals; evolution to greater sensitivity in the mission
- Proposed in '89, construction starting '95, construction finished on time and on budget

LIGO beam tube

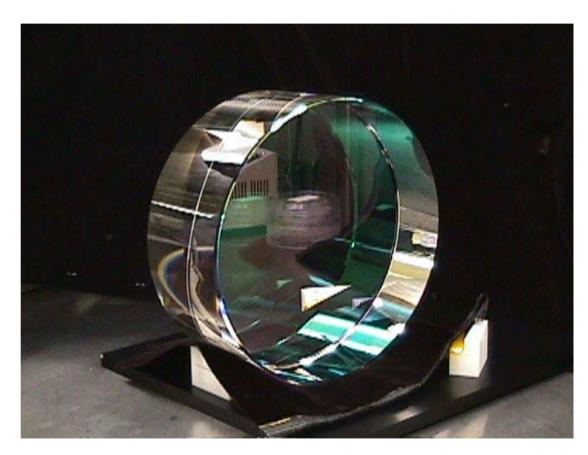
- LIGO beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

1.2 m diameter - 3mm stainless 50 km of weld....and not one leak

vacuum equipment

LIGO Optic

Substrates: SiO₂


25 cm Diameter, 10 cm thick Homogeneity $< 5 \times 10^{-7}$ Internal mode Q's $> 2 \times 10^{6}$

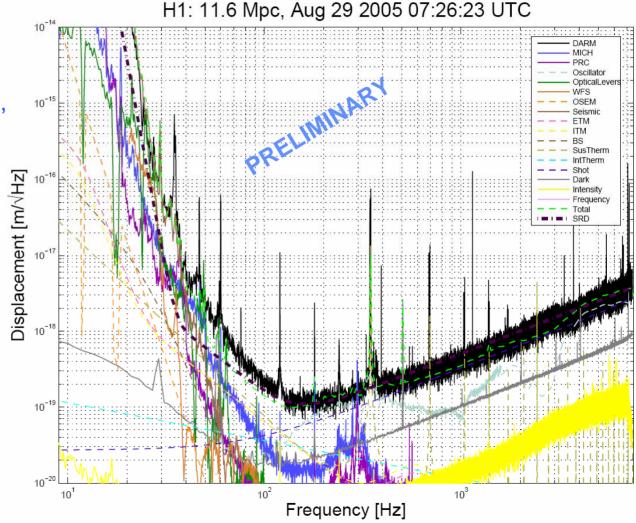
Polishing

Surface uniformity < 1 nm rms
Radii of curvature matched < 3%

Coating

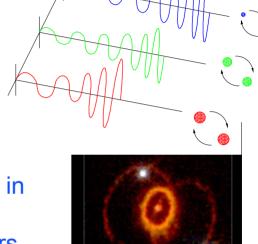
Scatter < 50 ppm Absorption < 2 ppm Uniformity <10⁻³

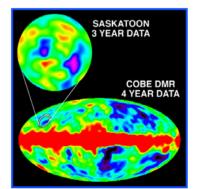
Core Optics


installation and alignment

Overall LIGO Status

- Commissioning drawing to a close
- Have run, collected data, analyzed, published – no detections to date
- Significant new 'upper limits' established
- Initial instruments ready to observe at design sensitivity
- Will start long runs in late 2005




Sources of gravitational waves

- Compact binary inspiral: "chirps"
 - » NS-NS waveforms -- good predictions
 - » BH-BH ($<10 M_s$) would like better models
 - » search technique: matched templates
- Supernovae / GRBs / Strings: "bursts"
 - » burst signals in coincidence, maybe with signals in electromagnetic radiation, neutrinos
 - » prompt alarm (~ one hour) with neutrino detectors
- Pulsars in our galaxy: "periodic"
 - » search for observed neutron stars (frequency, doppler shift)
 - » all sky search (computing challenge)

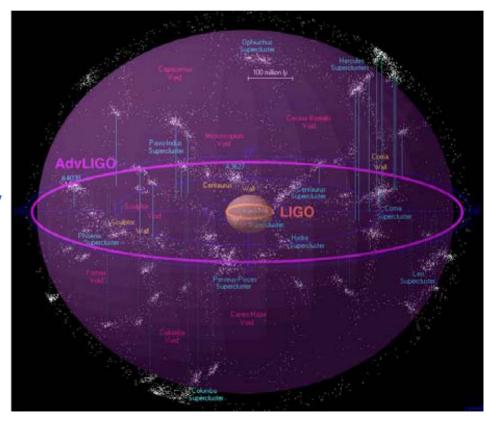
with frequency f

LIGO Community

- LIGO Laboratory: Caltech and MIT, and the staff at the observatories
- LIGO Scientific Collaboration: ~400 people, ~40 institutions, US + international collaborators
- Very strong and tight collaboration, with shared responsibilities
- Other detectors in Germany, Italy, Japan
- US instruments the most sensitive to date, and by design
 - » After initial observation, will join with others for joint observation
- Second generation instruments proposed around the world

LIGO Education

- Currently, 8 graduate students in the ~25 person MIT LIGO Lab; heavy undergraduate engagement, large SURF program at Caltech, a number of teaching universities engaged in our Collaboration
- Many graduates of the LIGO Lab have stayed in the field, become faculty; others gone on to industry jobs (strong optics, mechanics, controls, quantitative analysis skills)
- NSF-supported Public Education Program: Caltech with Southern University (Baton Rouge), LA Board of Regents, and the Exploratorium
 - » Building an outreach center at the Louisiana LIGO site
 - » Hands-on exhibits, coupled with tours
- Informal outreach at MIT through visits to grade schools, tours of classes to Lab, etc.
- Wonderful project for students
 - » Brand-new field, with open horizon
 - » Chance to think about fundamental questions of space, time, the universe
 - » Sensitivity limited by fundamental physics quantum, thermal fluctuations
 - » Ground-breaking technologies, applicable in science, industry
 - » Soldering irons, milling machines, and computers: a chance to really build something that has never been built before


LIGO Future

LIGO proposed and designed to house several

generations of detectors

Advanced LIGO proposed to follow initial LIGO observation run

- Factor of 10 more sensitive → 1000x greater volume, many more sources
- Anticipate several GW events per day
- The start of the 'Gravitational Wave Astronomy' we've been working for!
- Thanks to the NSF and the US taxpayers for their strong support

