Embry-Riddle Aeronautical University

- Proposal to join the LSC -

Andri M. Gretarsson

Embry-Riddle Gravitational Wave Astrophysics Group (ERGWAG)

Who is ERGWAG?

- Andri M. Gretarsson, Asst. Prof. Physics. ERAU.
 - Part of LSC since 1996
 - 1996-2002: Graduate student in Peter Saulson's laboratory
 - Suspension and thermal noise
 - AdLIGO coating thermal noise
 - Non-gaussian sources of mechanical noise
 - 2002-2005: Postdoc at LIGO Livingston Observatory
 - Commissioning
 - Nascent activity within Burst group (Glitch and ExtTrig)
- Up to 3 undergraduates
 - Most will be from ERAU's Space Physics program

- ty & Staff
 pplicants
- Europe. Empry-Riddle also provide education, or online learning, arou

Our Aerospace Engineering Program Gets Top Ranking for Fifth Straight Year

U.S.News & World Report's 2005 "Best Colleges" guide

M

int

has again

named Embry-Riddle number one in the

Aerospace/

Aeronautical/ Astronautical

Engineering category for schools without doctorate programs.

The Campaign For Embry-Riddle's Future

- 4-year undergraduate institution specializing in science related to aerospace (~30 degree programs).
- Two residential campuses: Daytona Beach, FL, Prescott, AZ.
- Prescott campus physics department has 8 full-time faculty of which 7 are active experimentalists:
 - 1 GW-detection, 2 Observational Astronomy,
 1 Remote Sensing, 2 High Energy,
 1 Electron Spectroscopy, 1 Pedagogy.
- Approx. 1700 students on Prescott campus of which approx. 80 are Space Physics majors.
- Faculty and Dean place great emphasis on participation of undergraduates in research.

Proposed Area of Research

- a) Characterization of instrumental artifacts (glitches) in LIGO within the context of the Burst Analysis Group.
- b) Experimental work towards the development of large composite test masses for future gravitational wave detectors.
- c) Be available to perform short notice laboratory tabletop measurement tasks for LIGO.

Proposed Burst work

- Work within the Burst group to identify and track down sources of glitches.
- Develop a set of glitch-classification tools.
 - To the extent possible, describe common characteristics of glitches whose source is known.
 - Develop channel-specific filters that trigger on known glitch types (dust, contrast changes...)
 - Analyze the propagation of glitches between the auxiliary ports in a statistical manner.
 - See if these methods can be used to establish what is normal instrument behavior and what is "abnormal" glitchiness -- ideally in real-time.

Composite test masses:

3rd generation interferometer / Adv. LIGO Upgrade

Upgrade: $\phi_{\text{coating high n}}$: $2 \times 10^{-4} \rightarrow 0.5 \times 10^{-4}$

 $P_{laser}: 125 \text{ W} \rightarrow 500 \text{ W}$

m_{test_mass}: 40 kg → composite 160 kg

Challenges and Rewards

Rewards

- Complementary with squeezing noise improvement by a factor of *slightly more than two* from each technology leads to a factor of *one hundred* in detection rate.
- Ballast can be heated to help reduce thermal lensing.
- If significant coating improvements are realized in time for Adv. LIGO, existing Adv. LIGO test masses could conceivably be embedded "as-is" in the ballast material.

Challenges

- Thermal noise from the ballast and ballast/optic interface must be kept below the coating and bulk thermal noise.
- Effect of mismatched materials properties needs to be studied (thermal expansion, elastic properties)
- Unforeseen issues (creak noise...)

Prioritized project list for Sep. '05 - Aug '06

• If nothing else:

- Participate fully in burst group. Begin classification of glitch features.
- Set up vacuum system in laboratory and investigate Q of wires clamped in the Initial LIGO manner.
- Measure the vibration frequencies of an Initial LIGO test mass cage (RM cage on loan from LLO, to be shipped.)
- Spend several weeks during summer at LLO, possibly with an undergraduate or two, to study propagation of intentionally injected transients.

• With successful undergraduate(s) do one or two of the following:

- Apply statistical methods to investigate transient propagation in long data sets.
- Finite element modeling of energy distribution in a clamp-wire interface & comparison with clamped wire loss measurements.
- Finite element models of composite test mass

• Longer term:

- Model, build and test scale-model composite test masses.
- Build real-time glitch classification/tracking tool.

How to deal with ballast and interface thermal noise

• Extending Levin-type calculations into the optic bulk shows that even for large spot sizes, the effect of interface loss and ballast material intrinsic loss may be manageable

