Delayed mergers: The contribution of ellipticals, globular clusters, and protoclusters to the LIGO detection rate

Aug 16, 2005

Richard O'Shaughnessy (with O'Leary, Fregeau, Kalogera, Rasio, Ivanova, Belczynski)

Northwestern University

LIGO-G050446-00-Z

Outine

- Prompt mergers and blue light
- Delayed mergers in ellipticals
 - Elliptical galaxies
 - Delayed mergers in ellipticals
 - LIGO rate

References: Regimbau et al, gr-qc/0506058

- Delayed mergers from globular clusters
 - Globular clusters
 - Model: Mass segregation and mergers

LIGO rate

<u>References</u>: Portegeis Zwart and McMillan 1998 O'Leary et al 2005, astro-ph/0508224

- Delayed mergers from protoclusters
 - Cluster formation & stripping/disruption
 - GC initial and present mass function
 - LIGO rate

LIGO merger rate from spirals

• Blue luminosity:

- assume mergers are fast
- Compact objects: from short-lived massive (blue) stars
- ... blue light traces merger rate

Delayed mergers

- <u>Some</u> mergers <u>can</u> take Gyr
- Blue light **not** reflective of merger rate?
 - spirals: already accounted for
 - <u>everything else</u>:

...any other star formation must be included

Star formation history

...and most stars form long ago

Experiment

QuickTime™ and a None decompressor are needed to see this picture.

Schneider et al, MNRAS 324 797 Pei, Fall, Hauser ApJ 522 604 Madau astro-ph/9907268

Hernquist and Springel, MNRAS 341 1253

<u>Theory</u>

- Elliptical galaxies
 - Big:

 $\begin{array}{l} M_{elliptical} \sim 2 \quad x \; 10^{11} \, M_O \\ M_{spiral} \; \sim 0.9 \; x \; 10^{11} \, M_O \end{array}$

[some get very large]

- **Old**:

- Most stars form early on
- Less blue light now (per unit mass)

– Uncommon:

 $\begin{array}{ll} \rho_{elliptical} & \thicksim 0.0025 \ / \ Mpc^3 \\ \rho_{spiral} & \thicksim 0.01 \ / \ Mpc^3 \end{array}$

Heyl et al MNRAS 285 613

Portegeis Zwart & McMillan ApJ 528 L17

- Merger distribution from quick burst
 - Predict via standard pop-synth

(**same code** as for spirals)

- NS-NS merger rate
 - per canonical elliptical
 - scaled to merger rate for MW

(works w/ any popsyn assumptions)

 Alternate approach: <u>Regimbau et al</u> (gr-qc/0506058)

+ Better elliptical model

(flatter IMF; fit to observed)

- + Ad-hoc popsyn
- + Fixed popsyn model

.... details scarce in paper

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

t (Gyr)

- NS-NS merger rate
 - Possibly significant: O(20%-2x) correction
 ellipticals ~ 5x less common than spirals

disagreement over population synthesis results (galaxy-by-galaxy basis)

• ...similarly for BH-BH, BH-NS

Ellipticals could matter

Mergers from Globular Clusters

- Globular clusters
 - Old

~ same age as galaxy [O(10 Gyr)] [though some "young" GCs are seen]

– Small M ~ 2 x 10⁵ M_o * 10^{±1}

– Common [density]
 ρ ~ 3 / Mpc³

- Dense (interacting !)

- relaxation time $\sim 10^2 10^3 \text{ Myr}$
- mass segregation t ~ t_{relax}* <m>/m_{BH}~ 10-100 Myr

Mergers from Globular Clusters

- Decoupled BH subcluster
 - Subcluster forms [relaxation time]
 - Fast evolution and interactions [BH relaxation time!]
 - Form and eject binaries (3-body interactions, Kozai, etc)
 - Many late mergers

 (~ 1/2 of all mergers)
 - Ejected binaries <u>eventually</u> merge
 - ... rate ~ 1/t
 - ... 10⁻⁴ mergers/M_o
 - [=rate ~ cluster mass]

Plot:

rate for $5x10^{6}M_{O}$ cluster 512 BH initially.... $5x10^{3}M_{O}$ in BHs

Mergers from Globular Clusters

- LIGO-II rate : **simplified** calculation
 - Short range:
 - Merger rate [~1/t] is ~ constant ~ 3*10⁻¹⁰/yr
 - LIGO range:

 $D = 191 \text{ Mpc} (M_c/1.2 M_O)^{5/6}$

- BH masses:
 - assume M ~ 14+14 Msun

(conservative!)

Result:

R_{GC} ~ 3/yr

(~ prediction from spirals)

Comments

- <u>Compare with Portegeis-Zwart & McMillan</u>: ...similar; they miss 1/t
- Limitations?:
 - Large clusters only: minimum mass for process
 - Competing effect (runaway collisions) ?
 - Cluster modelling (velocity dispersion)
 - Need birth masses of GC
- Higher chirp masses (vs from spirals):
 - Flatter IMF ("primordial"/salpeter)
 - All BHs formed contribute
 - Binary formation biased to high mass
- Birth time effect:
 - Weak
 - More recent formation (z~1) increases by only ~ x2

[using <u>present</u> masses]

[..M=14 is conservative]

Comments

Details....

O'Leary et al, astro-ph/0508224

- Evolving mass distribution:
 - Birth distribution consistent with

$$p_b(M)dM \propto rac{dM}{M^2} e^{-M/M_*}$$

M_{*}= 5x10⁶ M_O

- Present distribution roughly

 $p_b(M)dM \propto M dM e^{-M/M_*}$ M_{*}= 0.6x10⁶ M_O

Fall and Zhang, ApJ 561, 751

- <u>Scaling up</u>:
 - Process requires M>10⁵
 - Rate ~ mass
 - For clusters M>10⁵
 - M_{now} :Total mass in **all** clusters M>10⁵
 - M_{birth} :Total mass in **all** clusters M>10⁵

- Optimistic model
 - 10% of baryons form stars
 - 30% stars form in clusters early
 - $\sim 50\%$ of cluster mass in clusters > $10^5 M_{\odot}$
 - ... with 20+20 M_{O} (ignoring redshifting & band issues)
 - R ~ 10³/yr [possibly slightly more]
- <u>Consistency</u>?
 - Problem...consistency w/ GC distribution?
 ... but GC birth mass uncertain (stripping)

• BH-BH detection rate:

- Range of possibilities...

What does this mean to you?

Multiple population models
 <u>Field stars</u> and <u>clusters</u> produce different binaries

...different injections?

• Push **low** frequency sensitivity hard!