

InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

David B. Jackrel, Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong Rao, and James S. Harris, Jr. Solid State Research Lab, Stanford University

> LSC Meeting – LHO August 16th, 2005

LIGO-G050435-00-Z

Introduction

- AdLIGO Photodiode Specifications
- Device Materials
- Device Design

GaIn(N)As(Sb) Materials & Device Results

Conclusion

	I-LIGO	Advanced LIGO	
Detector	Bank of 6PDs	DC - Readout	RF – Readout
Steady-State "Power" (mW)	600	30 - 100	← (same as DC)
Operating Frequency	30 Mhz	100 kHz	200 MHz
Quantum Efficiency	> 80%	> 90%	← (same as DC)
Damage Threshold (MW/cm ²)	< 5	< 50	← (same as DC)

Harris Group Metamorphic-InGaAs vs. GalnNAs Double Heterostructres

Sb surfactant effects improve thin strained nitride films

^{7/18}

Introduction

• GaIn(N)As(Sb) Materials and Device Results

- Materials Characterization Summary
- Dark Current
- Bandwidth
- Quantum Efficiency
- Saturation Power Level
- Conclusion & Future Work

Harris Group Jolid State Lab Dark Current Density: Galn(N)As(Sb) Devices

10/18

AdLIGO PD Specifications:

<u>3-dB Bandwidth</u> DC-Scheme 100 k Sat. Power

DC-Scheme: 100 kHz RF-Scheme: 200 MHz 30 – 100 mW

AdLIGO RF-Readout Challenging for PDs!

Harris Group InGaAs & GalnNAs PDs – IQE (w/FCA & Incomplete Absorption)

STANFORD

12/18

STANFORD

(* scaled to account for FCA in thick substrates) **13 / 18**

Photodiode Saturation Power

STANFORD

(* scaled to account for FCA in thick substrates) 14/18

STANFORD

	AdLIGO AS-PD Specification	B-I PDs Developed at Stanford	F-I PDs Commercial devices
Saturation Power (mW)	30 - 100	~ 150	100 ~ 200
Quantum Efficiency	90 %	75 % (→ 90 % w/ substrate removal)	~ 90 %
Bandwidth (MHz)	100 kHz (→ 200 MHz RF-scheme)	4	1~10
Damage Threshold (MW/cm ²)	< 5 (w/ 1 μs shutter & 1 mm spot)	Modeling ~ 3 (w/ 1 mm spot)	Modeling ~ 0.4 (w/ 1 mm spot)

- Substrate removal
 - → 90 % QE
- High-Temperature Packaging
 - LLO or LHO Damage Threshold Tests?
 - Compatible with other experiments (GEO-600, MIT?)
- Surface Uniformity & Noise Characterization
 - GEO-600
- Multi-Element Sensors?
 - Additional pointing information
 - Spatial mode information
- Fabricate AdLIGO Photodiodes

- National Science Foundation (NSF); this material is based on work supported by the NSF under grants 9900793 and 0140297.
- Aaron Ptak, Manuel Romero and Wyatt Metzger at National Renewable Energy Labortatory (NREL) in Golden, CO
- Gyles Webster at Accent Optical in San Jose, CA
- Thank You

Extra slides

Deflection Plates (DP) on Plasma Source→ protect growth surface from ion damage

- Effusion cells for In, Ga and Al
- Cracking cell for As and Sb
- RF-Plasma N cell

Double-Heterostructure PIN Photodiodes

Materials Results Summary

STANFORD

PL Trap Intensity Absorption Density Relaxation TDD (A.U.) (%) (%) (cm⁻²) (cm⁻³) **MM-InGaAs** 24.1 88.9 96% 1e7 2.0e13 60% 1.1e14 GaInNAs 2.2 ~1e5 4.3 GaInNAs (DP) 8.5 70% ~3e5 _ 80% GaInNAsSb 1.1 44.6 < 1e5