

Trace element content comparison for high-loss and low-loss sapphire*

S. C. McGuire Department of Physics Southern University and A&M College Baton Rouge, Louisiana 70813 G. P. Lamaze and E. A. Mackey Chemical Sciences and Technology Lab NIST Gaithersburg, MD 20899

*Work supported by NSF Grant No. PHY-0101177

--- Talk presented at the 2005 LIGO Scientific Collaboration Meeting

Hanford, WA, August 13-17, 2005

LIGO-G050382-00-Z

TALK OUTLINE

- Motivation
- Methods & Materials
- **Results**
- Summary & Future Work

LIGO 1064 nm Absorption

Trace element measurements in Al₂O₃ Objective:

Obtain physical correlations between chemical impurities (Ti, Cr, Fe, Co, etc.) and optical absorption characteristics of materials under consideration for use as test masses and optical coatings in advanced LIGO.

HEM[™] Process Crystal Systems, Inc.

From K. Nassau, Scientific American 1980, 134

LIGO

Neutron Activation Analysis (PGAA&INAA)

Principle: when exposed to a neutron beam, nuclei absorb neutrons and form compound nuclei which de-excite by emission of prompt γ -rays. The often-produced radioactive product nuclei emit delayed γ -rays. The γ -ray energy is used to identify the isotope and the amount of radiation is directly proportional to the amount of element.

• Prompt gamma activation

$$\mathbf{N}_{\gamma} = \mathbf{N}_{\text{atoms}} \cdot \mathbf{f} \cdot \boldsymbol{\sigma}_{\text{cap}} \cdot \boldsymbol{\Phi} \cdot \mathbf{p}_{\gamma} \cdot \boldsymbol{\varepsilon}_{\gamma} \cdot \Delta \mathbf{T}_{\text{count}}$$

• Delayed gamma activation $N_{\gamma} = N_{atoms} \cdot (\lambda^{-1}) \cdot \mathbf{f} \cdot \sigma_{cap} \cdot \Phi \cdot \mathbf{I}_{\gamma} \cdot \varepsilon_{\gamma} \cdot (\mathbf{TF})$

where,

LIGO

- $\mathbf{TF} = (1 \exp(-\lambda t_1))\exp(-\lambda t_2)(1 \exp(-\lambda t_3))$
- t_1 = irradiation time
- $t_2 = decay time$
- $t_3 = counting time$

SRMs 1575,1566b, 2702

γ -ray Spectroscopy

LIGO

Mass fraction estimates based on comparison with SRM 2709 San Joaquim Soil.*

Element	Low Loss sample	High Loss sample	SRM 1575a	Certified Value
Sc	$0.06 \pm 0.02 \text{ ppb}$	0.20 ± 0.04 ppb	$10.8 \pm 0.8 \text{ ppb}$	10.1 ± 0.3 ppb
Cr	9 ± 2 ppb	8 ± 1 ppb	0.36 ±0.03 ppm	0.3 - 0.5 ppm range
Fe	$\leq 1 \text{ ppm}$	$\leq 1 \text{ ppm}$	45 ± 2 ppm	46 ± 2 ppm
Со	$\leq 1 \text{ ppb}$	1.2 ± 0.4 ppb	68 ± 3 ppb	61 ± 2 ppb
Zn	30 ± 3 ppb	$40 \pm 4 \text{ ppb}$	$39 \pm 2 \text{ ppm}$	38 ± 2 ppm
Sb	$\leq 2 \text{ ppb}$	$\leq 2 \text{ ppb}$	$10 \pm 3 \text{ ppb}$	not certified
La	7 ± 0.4 ppb	4 ± 0.4 ppb	53 ± 7 ppb	not certified

S. C. McGuire, G. P. Lamaze and E. A. Mackey, Trans. Am. Nucl. Soc. Vol. 89, 773 (2003).

Trace Element Comparison

LIGO

LIGO Summary & Future Work

- Synthetic sapphire measurements show typical broad range of elements at sub-ppm levels.
- Excellent sensitivity for the elements of primary interest.
- First-time measurements of transition metal and higher-Z elements at sub-ppm levels in synthetic sapphire.
- Correlations between absorption and trace element content not evident.
- Successful implementation of a program of research-based trace element measurements for advanced LIGO optics.
- Fused silica substrate down select in March 2005
- Application of work to losses in coatings on fused silica in progress.

Development of local support facilities is well underway at Southern University and at the LIGO Livingston Observatory.

COLLABORATORS

L.L. Henry, M. J. Baham and E. Preddie Department of Physics, Southern University and A&M College Baton Rouge, LA

G. P. Lamaze and E. A. Mackey *NIST, Chemical Sciences and Technology Laboratory* Gaithersburg, MD

M. Fejer and R. K. Route *Ginzton Laboratory, Stanford University* Stanford, CA

S. Brennan, K. Luening, P. Pianetta, A. Singh Stanford Synchrotron Radiation Laboratory SLAC/HBCU Partnership Program Menlo Park, CA

S. Cliff, K. H. Jackson, M. Jimenez-Cruz Advanced Light Source Lawrence Berkeley Laboratory Berkeley, CA

