

A Coherent Network Burst Analysis

Patrick Sutton

on behalf of

Shourov Chatterji, Albert Lazzarini, Antony Searle, Leo Stein, Massimo Tinto

LIGO-G050335-00-Z

Outline

- Basic concept of coherent burst searches
- Null streams, time delays and signal reconstruction
- Features of a sky map of null stream power
- Pros and cons relative to existing methods
- Anticipated real world problems

- Networks of 3+ distinct observatories contain redundant GW information
 - » Can exactly remove GWB strain by making an appropriate linear combination of time-shifted detector outputs
 - » Uncorrelated noise (e.g., glitches) cannot be so removed.
- Suggested references:

- » Gursel & Tinto, PRD 40 3884 (1989).
- » Flanagan and Hughes, PRD 57 4566 (1998).
- » Anderson, Brady, Creighton, and Flanagan, PRD 63 042003 (2001).

Null Streams

• Output of N white-noise detectors: **d** = **F h** + **n**, where

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} F_1^+ & F_1^* \\ F_2^+ & F_2^* \\ \vdots & \vdots \\ F_N^+ & F_N^* \end{bmatrix}, \quad \mathbf{h} = \begin{bmatrix} h^+ \\ h^* \end{bmatrix} \text{ and } \mathbf{n} = \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_N \end{bmatrix}$$

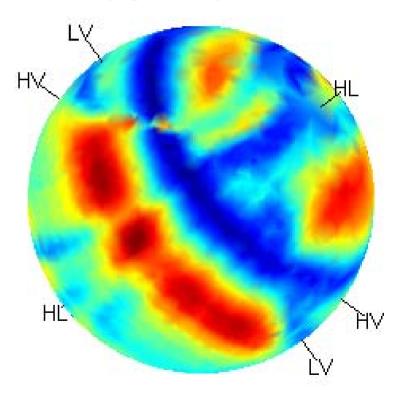
- » Antenna responses F vary with sky direction
- There are N-2 independent linear combinations of the d_j which contain no GW signal.

$$I_{i} = \sum_{j} K_{ij} d_{j} = \sum_{j} K_{ij} n_{j}, \quad i \in \{1, ..., N-2\}$$

where: $\sum_{j} K_{ij} F_{j}^{+} = 0, \quad \sum_{j} K_{ij} F_{j}^{\times} = 0,$

• Power in these null streams is χ^2 distributed (N-2)*length(d) degrees of freedom *if we pick the correct sky position*.

Sutton LIGO-Virgo Telecon 2005.08.03

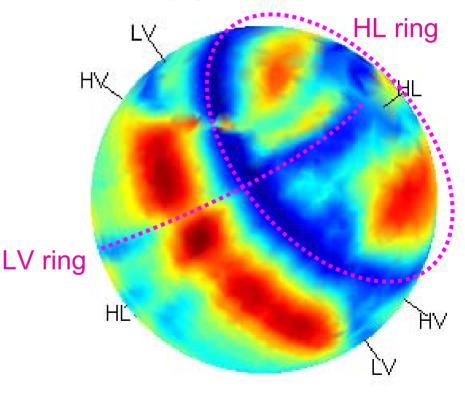

Sky Map of Null Power

 If a signal is present, only the null streams for the correct direction on the sky cancel out the excess power

LIGO

- » If noise glitch, then *no* sky position cancels excess power.
- The correct location is a global minimum (in high SNR limit)

• DFM supernova example blue: low power (signal cancelled) red: high power (signal not cancelled)


Sky Map of Null Power

 If a signal is present, only the null streams for the correct direction on the sky cancel out the excess power

LIGO

- » If noise glitch, then *no* sky position cancels excess power.
- The correct location is a global minimum (in high SNR limit)
 - » Rings are due to correlations in pairs of detectors

• DFM supernova example blue: low power (signal cancelled) red: high power (signal not cancelled)

Significance

• Excess power in the null stream

- » Something in the data that is neither
 - White noise
 - A gravitational wave signal from that direction
- » If excess power for all directions at some time, a timecoincident glitch has been found and can be considered a veto for other analyses

- No excess power in the null stream
 - » Data could be
 - White noise
 - A gravitational wave signal from that direction
 - » There are locations on the sky where glitches in any one or two detectors do not produce any null power.
 - Developing thresholding technique to compute significance as a function of sky position.

Time Delays

- Null stream coefficients K_{ij} are only valid for one particular direction
 - » Direction Ω in Earth-based coordinates
- Data from detector at a location x must be delayed by

 $\Delta t = -c^{-1} \mathbf{x} \cdot \mathbf{\Omega}$

- Directions for an all-sky search chosen to not exceed allowed mismatch at maximum frequency of analysis
 - » Equivalent to mismatch in Δt
 - » Currently done by decimation
 - » Density varies with detectors
 - » >10³ directions for <1ms error

LIGO

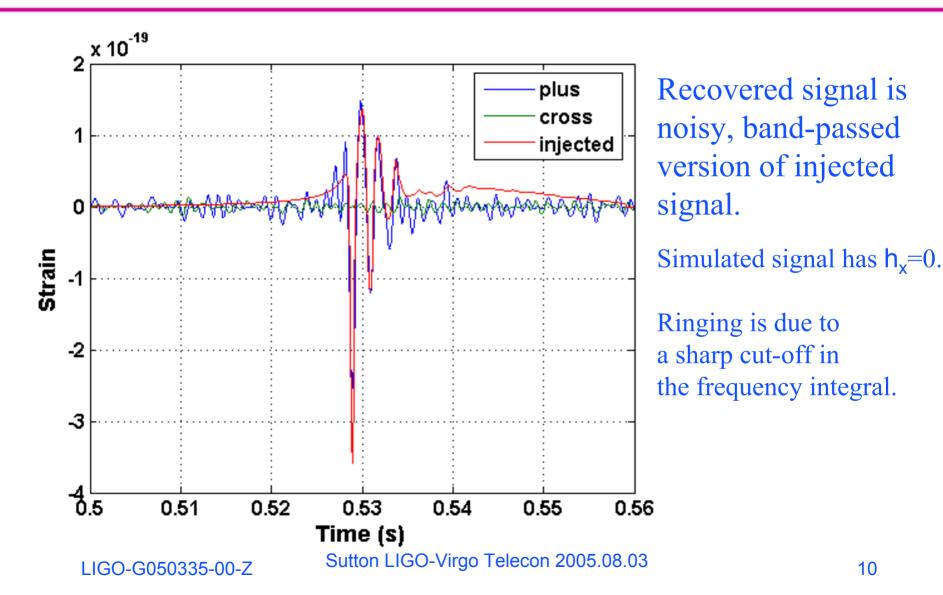
Sutton LIGO-Virgo Telecon 2005.08.03

• Given sky location, can estimate GWB signal as h_+ , h_x that maximizes likelihood Λ :

$$\Lambda \equiv -\ln P(\vec{d} \mid h_{+}, h_{\times}, \theta, \phi) \approx -\frac{1}{2} \sum_{a} \sum_{f} \frac{\left| d_{a}(f) - \left[F_{a}^{+}h_{+}(f) + F_{a}^{\times}h_{\times}(f) \right] \right|^{2}}{S_{a}(f)}$$

 Maximizing Λ gives linear system of equations for h₊, h_x in terms of data d. Can solve explicitly for general network:

$$0 = \frac{\partial \Lambda}{\partial h_{+}^{*}}, \quad 0 = \frac{\partial \Lambda}{\partial h_{\times}^{*}} \qquad \Longrightarrow \qquad h_{+,\times}^{\text{best}} = \sum_{a} V_{a}^{+,\times} d_{a}$$
$$V_{a}^{+,\times} = V_{a}^{+,\times} [S_{a}(f), F^{+}(\theta, \phi), F^{\times}(\theta, \phi)]$$


LIGO-G050335-00-Z

LIGO

Sutton LIGO-Virgo Telecon 2005.08.03

Signal Recovery

LIGO

10

- Almost ready for large-scale Monte-Carlo simulations
- MATLAB, available from lsc-soft/matapps
- Much slower than real time (many directions on sky)
 - » Triggering on incoherent null power would make much faster

Pros and Cons

• Eyes open search

- » Unknown or unanticipated waveforms
- Innately distinguishes between gravitational waves and glitches
 - » A powerful veto for other methods

- Less sensitive than matched filtering
- Needs 3+ instruments
 - » Not co-located
 - » LIGO + Virgo or GEO
- Computationally expensive

Some Real World Problems

• Sensitivity

- » Requires significant excess power
- Nonstationary noise
 - » Will hurt analytic thresholds
- Calibration errors
 - » Null stream will not exactly cancel, so there will be residual power.
- Matching time-frequency bands:
 - » Run over a nested grid of time and frequency bands like Qpipeline to avoid drowning signal in out-of-band noise

- Finite sampling of the sky
 - » Must look for white noise + allowed mismatch
- Computational cost
 - Can be run as a triggered search, as statistical test threshold requires excess power in detectors
- Population of correlated glitches?