Gravitational Wave Detection Using Precision Interferometry

Gregory Harry

Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration -

> July 20, 2004 American Society for Precision Engineering Middletown CT

Gravitational Wave Detection

LIGO

- Gravitational waves predicted by Einstein
- Accelerating masses create ripples in space-time
- Need astronomical sized masses moving near speed of light to get detectable effect

- •Two 4 km and one 2 km long interferometers
- Two sites in the US, Louisiana and Washington
- Similar experiments in Italy, Germany, Japan
- Whole optical path enclosed in vacuum
- Sensitive to strains around 10-21

Interferometer Sensitivity

LIGO

Advanced LIGO

LIGO

LIGO Interferometry

LIGO

Optical Configuration

LIGO

LIGO

Coating Thermal Noise and Thermal Compensation

Thermal Noise

- Sets sensitivity limit to LIGO
- Floor on sensitivity in all applications
 - Laser frequency stabilization
 - Atomic force microscopy
 - Small systems (bio and nano)
- Fluctuation Dissipation Theorem

 $S_F(f) = 4 k_B T Re[Z]$

• Dissipation in coating limit in advanced LIGO

Thermal Compensation

- Optics absorb energy from laser
- Heating causes thermal distortions
- Optics designed for expected absorption
 - Coating 0.5 ppm
 - Silica substrate 4 ppm/cm
- Deviations from this require additional heating
- •Thermal compensation using CO₂ laser now in place

Coating Research

LIGO

Optical Absorption Photothermal Common-Path Interferometry

- Can measure sub-ppm absorption
- Spatial resolution sub-millimeter

Silica/Tantala Coatings

Initial LIGO Coating

Layers	Materials	Los
30	λ/4 SiO ₂ - λ/4 Ta ₂ O ₅	2.
60	$\lambda/8 \operatorname{SiO}_2 - \lambda/8 \operatorname{Ta}_2 O_5$	2.
2	$\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5$	2.
30	$\lambda/8 \operatorname{SiO}_2 - 3\lambda/8 \operatorname{Ta}_2 \operatorname{O}_5$	3.8
30	$3\lambda/8 \operatorname{SiO}_2 - \lambda/8 \operatorname{Ta}_2 \operatorname{O}_5$	1.

LIGO

- Loss is caused by internal friction in materials, not by interface effects
- Differing layer thickness allow individual material loss angles to be determined

 $\phi_{Ta2O5} = 4.4 + - 0.2 \ 10^{-4}$ $\phi_{SiO2} = 0.5 + - 0.3 \ 10^{-4}$

Evidence of frequency dependence to loss

- Only in silica layers
- Improving at lower frequencies
- Consistent with data on bulk silica

Titania Dopant in Tantala

 $\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5$ Coatings with TiO₂ dopant

LIGO

Optical absorption between 1 and 2 ppm Advanced LIGO requirement <0.5 ppm

Also need scatter < 2 ppm HR transmission < 5 ppm Thickness uniformity < 10⁻³

Any amount of titania reduces mechanical loss

- What physical mechanism causes this?
- Is there a better dopant? Or alloy?
- Can optical absorption be reduced?

Work done in collaboration with LMA/Virgo in Lyon, France as part of advanced LIGO coating research

Absorption in LIGO Optics

Laser light reflecting off coatings and traversing silica substrates will be absorbed.

LIGO

Largest effect in input mirrors because of the transmission

Heating and lensing cause reduction in interference pattern and power buildup

Coating absorption

Substrate absorption

Thermal Compensation

Heating and lensing controlled by adding additional heat with a CO₂ laser

LIGO

Too much heating can be corrected by adding light to optic edge

Too little heating can be corrected by adding light to center

May have to correct for inhomogeneous heating in advanced LIGO

Over-heat Under-heat Heating pattern pattern pattern

Sensitivity Improvement from Thermal Compensation

Lensing was bad enough at Hanford 4 kilometer interferometer could not operate above 4 W of input power

LIGO

- With thermal compensation, high power and less shot noise are achievable
- Advanced LIGO will have nearly 1 MW of circulating power in cavities
- Low absorption coatings and substrates, as well as high performance thermal compensation, are essential

Green: without thermal compensation Red: with thermal compensation

Conclusions

- Gravitational wave detection is pushing the limits of interferometric sensing
- LIGO is close to achieving sensitivity goal
- Planned advanced LIGO will improve on initial interferometers
- Coating thermal noise will be limiting noise source in future interferometers
- Thermal lensing requires compensation system

Optics Metrology

Initial LIGO

- Surface figure $\sigma_{\rm rms}$ < 0.8 nm over central 80 mm
 - Repeatable to 0.2 nm
- Radius of curvature

LIGO

- Match between optics in same arm to 1.5 %
- Repeatability to 5 nm
- Measured using Fizeau interferometry

Difference in consecutive cavity measurements

 Inspiralling binary neutron stars or black holes

Supernova

LIGO

• Distorted pulsars

SN1987A

Bumpy Neutron Star

Stochastic background

Direct Measurement of Coating Thermal Noise

- LIGO/Caltech's Thermal Noise Interferometer
- 1 cm long arm cavities, 0.15 mm laser spot size
- Consistent with ~ 4 10⁻⁴ coating loss angle

LIGO

