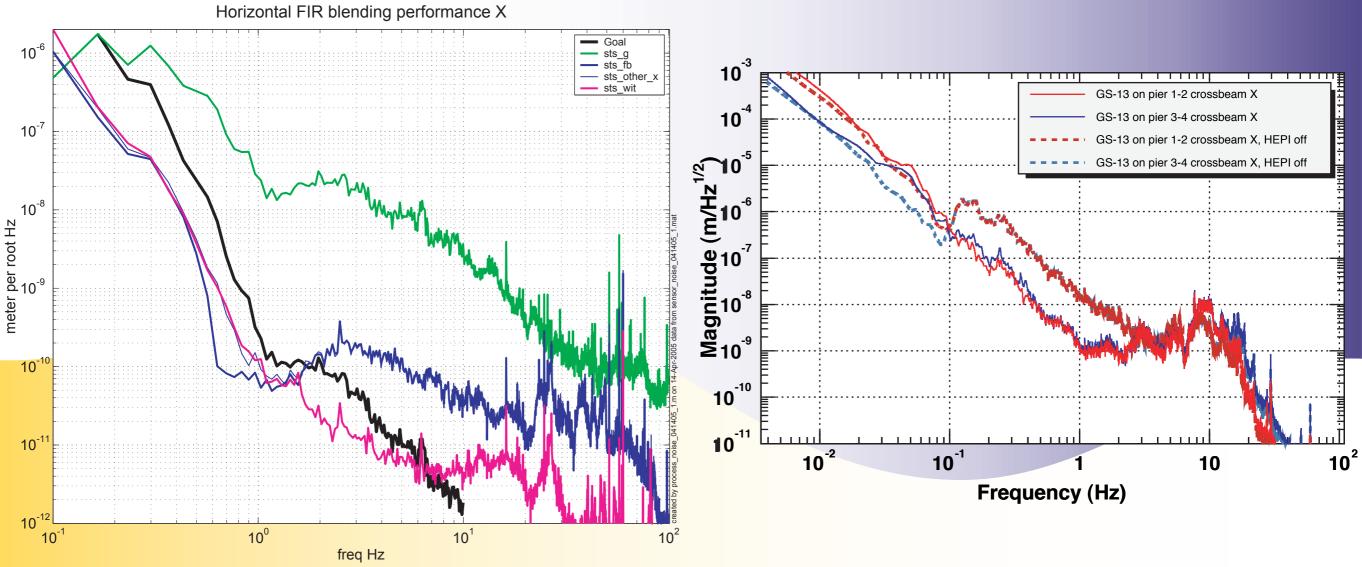
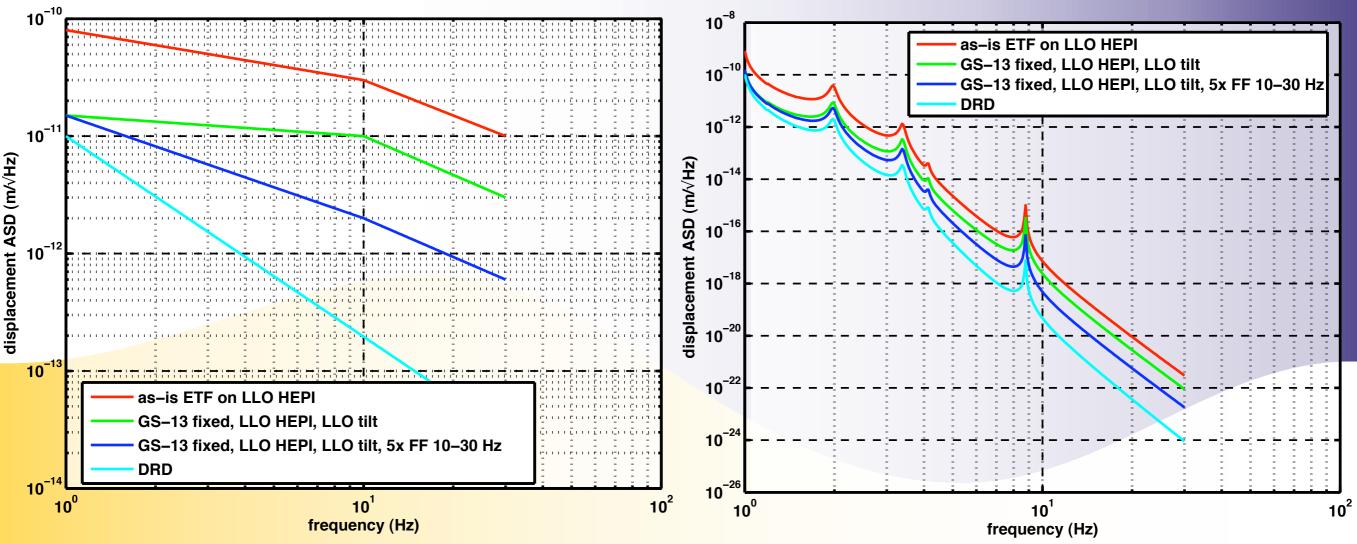
LIGO



Adv LIGO SEI critical review update

J. Giaime, 25 May 05


LIGO-G050270-00-R

Noise from experimental results

- Make set of noise curves for SEI, based on demonstrated performance, and with predictable improvements.
- Stanford noise curves well understood, and effect of better sensor instrumentation and tilt input can be predicted.
- HEPI performance at LLO taken as-is, without assuming any improvements for Adv LIGO.

Performance predictions

- Red (worst case): demonstrated ETF performance, assuming no improvement in either sensor noise floor or mechanics. Tilt input is as at Stanford. HEPI translational noise is as measured at LLO HEPI crossbeams.
- Green: GS-13 noise floor using LT1012 op-amps, Tilt input as measured at LLO HEPI.
- Blue: Factor of 5 amelioration of HEPI 'shoulder' using feedforward from HEPI geophones to stage 1 actuators, in the 10–30 Hz band.
- Cyan: DRD curve.
- N.B. same SEI spectrum used for horizontal and vertical, in each case. Excess vertical at 10 Hz will be fixed with softer stage 0-1 springs.

Effects on Adv LIGO

		I0 Hz ASD (m/√Hz)	Freq for 1e-19 m/√Hz at test mass					
	Worst case	6.6e-18	15.2 Hz		z 1/2			
	simple fixes	2.2e-18	13.4 Hz		221/(f)/Hz			
	w/ 5x FF	4.4e-19	II.4 Hz		Joise			
	DRD	4.3e-20	9.6 Hz		23 -23		antum	
					Equivalent strain noise	gravity gradients		
 Hard to distinguish cases unless we assume low- power laser or improved quantum noise. 					10 ⁻²⁴	Jients		
•	 blue case is at expected gravity gradient level. 					1	1(0 ² Free

Plans

- Complete ISI modeling (BTL), studying effect of reduced blade spring stiffness. Modify system noise predictions accordingly.
- Design new blade springs (ASI), based on design rough geometry worked out by team. Check for effect on mechanical stiffness matrix, etc.
- Continue HEPI / external structure modeling and measurements; perhaps understanding will result in proposal for modifications of mechanical structure. (we are not counting on this, though.)
- At LASTI, study FF techniques from HEPI to stage 1.