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Layout of Talk
• Thermal distortion and compensation in Adv. 

GWIs
• Off-axis Hartmann wavefront sensor – design 

and analysis
• Bench top tests of Hartmann sensor
• Implementation of sensor in the Gingin

experiment



ACIGA Objectives
• Investigate the operation of active thermal 

compensation systems for use in Adv. GWIs.
• University of Adelaide is providing a sensor to 

measure thermo-refractive distortion and 
effectiveness of compensation in the Gingin High 
Power Test Facility (AIGO).



Crux of Thermal Problem

Courtesy of Ryan Lawrence and David Ottaway, MIT

• Figure shows prediction of MELODY model of Advanced LIGO 
• Absorbed power, in coatings and substrates, causes thermal lensing
• Sideband power is coupled out of TEM00
• Power recycling cavity eventually loses lock
• Adv. LIGO cannot achieve desired sensitivity unaided



How to Maintain Locked Cavity?

• Measure distortion in ITM with an off-axis 
wavefront sensor

• Employ active compensation system, reducing 
distortion to < λ/200. Heated compensation plate 
will be used in Gingin experiment

• Hartmann sensor selected
– not sensitive to alignment
– simulated sensitivity < λ/1000



Hartmann Wavefront Sensor
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• Each Hartmann ray propagates normal to the wavefront
• Subsequently, rays are incident on a CCD forming a pattern of spots 
• Centroid of each spot is found using a 1st moment calculation on spot 

intensity
• When the wavefront changes, the spots are displaced on the CCD
• Spot displacement is proportional to gradient of the change in 

wavefront
• Simulated Hartmann measurement had an precision of < λ/1000



Example of Compensation System
Heated Compensation plate
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Example of Compensation System
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• How do you relate the off-axis OPD to the 
on-axis OPD?



Modal Analysis of Off-Axis OPD

n(r, z) = Σ ai fi(r, z)ϕ(x, y)= Σ ai gi(x, y) ϕ(r)= Σ ai Fi(r) *

• Functions gi(x, y) are path integrated versions of fi(r, z)

• Parameters ai found by a least squares fit of off-axis OPD 
to functions gi(x, y)

• Ideally, both sets {f(r, z)} and {g(x, y)} are orthogonal and 
there exists a simple path integral relating them

• No ideal sets have been found – currently using a small 
set of non-orthogonal functions (Gaussians) for f(r, z)

y r r

x z

* Fi(r) is the integral of fi(r, z) along the z-axis



Off-Axis Bench Top Test

Hartmann plate



Off-Axis Bench Top Test



Results – Angular Noise
• Differences in successive images yield 

the angular noise of the Hartmann 
sensor

• Minimum detectable angle 
≈ 3.5 µradians

• Min OPD ≈ λ/200 (based on .9mm separation 
between holes in Hartmann plate)

Hartmann spot pattern



Coincidence Measurement – Raw Data

On axis OPD (interferometer) Off axis OPD (Hartmann) 
(reconstructed from gradient map)

x (mm)

y (mm)OPD (waves at 633nm)
OPD (waves at 633nm)

x (mm)
y (mm)

Sanity Check on data 

OPD’s roughly the same size

Off-axis OPD elongated in the x direction as expected



Results – Radial OPD

r (mm)

• Interferometric fringe displacement on-axis

On axis fit of off axis Hartmann data (via 
modal analysis discussed earlier)
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σhartmann ≈ λ/100 

• On-axis distortion is elliptical (minor axis = 90% major axis)

• Systematic error since analysis assumes axial symmetry

• Worst case analysis: ignore systematic error, average 
elliptical data to circle. In this case standard deviation between 
on-axis data and analyzed Hartmann data ≈ λ/100



Sensitivity of Hartmann sensor
Precision
Required < λ / 200
Simulated < λ / 1000
Experiment < λ / 100

Issues to address before final experiment at Gingin
• Systematic errors: - number/type of fitting functions

- elliptical heating beam
• Random errors: - air currents – use tent?

- can illumination of Hartmann plate be 
more uniform?
- precision of interferometer



Gingin Experiment Design



• Off-axis view of ITM and compensation plate (CP)

• Viewing angle = 10°



Prediction of Off-Axis OPD for 
Gingin Experiment

+ve OPD from ITM

-ve OPD from CP
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• Off axis view resolves z-
dependent effects – on-axis 
does not

• Observer can determine 
where distortion occurred 
(subject to axially symmetry)

• Distortion and compensation recorded in a single measurement

• Analyzed data can be used as an error signal for CP



Closing remarks
• Current off-axis Hartmann sensor has achieved accuracy 

of approximately λ/100 in the lab.
• Should be able to improve this by addressing issues 

covered earlier.
Gingin installation schedule
MAR-APR ’05 Installation of Hartmann beam steering 

optics and compensation plate
MAY-JUN ’05 Test of Hartmann system

- on-site sensitivity test
- measure compensation plate OPD

JUL-DEC ’05 ITM distortion and compensation plate 
combined phase measurement
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