

The pulsar upper limits are already interesting!

Ben Owen

LSC @ LLO

How bumpy can neutron stars be?

- Ellipticity $\varepsilon = (I_{xx} I_{yy})/I_{zz} \sim Q_{22}/I_{zz}$
- Elastic deformations
 - » Solid matter folded, spindled, and mutilated
 - » Max determined by breaking strain, shear modulus
 - » Traditional answer: $\varepsilon_{\text{max}} \sim \text{few x } 10^{-7} \text{ (LIGO-S1 PRD 2004)}$
 - » New crazy answer: $\varepsilon_{\text{max}} \sim \text{few x } 10^{-4} \text{ (Owen astro-ph/0503399)}$
 - » New not-so-crazy answer: $\varepsilon_{\text{max}} \sim 10^{-5}$ (Owen astro-ph/0503399)
- Hydromagnetic deformations
 - » Accreting matter (maybe not solid) bottled by magnetic field
 - » Max determined by field strength, matter conductivity (flow-thru)
 - » New answer: $\varepsilon_{\text{max}} \sim 10^{-5}$ (Melatos & Payne astro-ph/0503287)

LIGO-G050143-00-Z

Elastic deformations

- Solid crust (all stars)
 - » Ushomirsky et al MNRAS (2000)
 - » Neutron-rich nuclei
 - » Conservative physics
- Solid core (hybrid star)
 - » Glendenning PRD (1992)
 - » Gradual phase transition
 - » (-) quark droplets in (+) baryonic background
 - » Up to 8km solid core
 - » Not-so-crazy physics
- All-solid (strange quark) star
 - » Xu ApJL (2003)
 - » s quark clustering
 - » Crazy physics

LIGO-G050143-00-Z

Hydromagnetic deformations

- Melatos & Phinney PASP (2000)
- Accreting ms pulsars only
- Accreted matter funnels towards magnetic pole
- Matter crosses field lines slowly (Ohmic diffusion)
- Depends on conductivity of matter at low density
- Field lines hold up mountain that would collapse under its own weight

LIGO-G050143-00-Z

Good news for searches

- S2 known pulsars
 - » 9 pulsars ε < few x 10⁻⁴ (solid strange star) mildly interesting
 - » (These have no competing spindown upper limit)
- S5 known pulsars
 - » (Extrapolating SRD sensitivity and 1yr integration time)
 - » 9 "original" pulsars ε < 10⁻⁵ (hybrid star) interesting!
 - » O(10) more have ε < 10⁻⁵ and O(100) have ε < few x 10⁻⁴
- S5 all-sky
 - » Solid strange star ε_{max} visible in most of galaxy (beyond core)
 - » Hybrid star ε_{max} visible to few kpc (Gould belt, not galactic core)
- Detection: ε too big for normal star
- Many non-detections: render a model unlikely

LIGO-G050143-00-Z

March 23, 2005 LSC @ LLO

Don't party just yet...

- Many radio pulsars have $\varepsilon < 10^{-8}$ from spindown (probably even in globular clusters)
- How to get to ε_{max} ?
- How to keep at ε_{max} ?
- Stars with big ε don't last long in the LIGO band
- Hydromagnetic: accreting millisecond pulsars in LMXBs have $\varepsilon \sim 10^{-7}$ from x-ray flux and torque balance; have we seen them all?

LIGO-G050143-00-Z

March 23, 2005 LSC @ LLO

Conclusions

- Limits on ε < 10⁻⁴ (S2) are already (mildly) interesting
- Limits on ε < 10⁻⁵ (S5) get us to where we might detect something in a reasonable theory
- Enough non-detections will let us confront, though not rule out, some theories of dense matter

March 23, 2005 LSC @ LLO 7