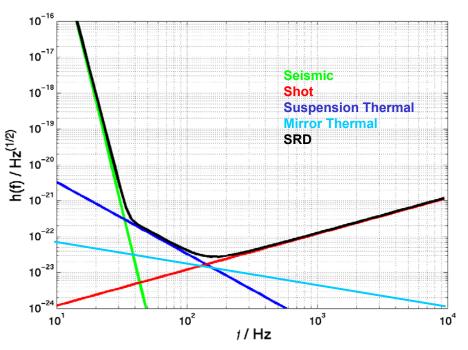
Thermal Noise in Initial LIGO

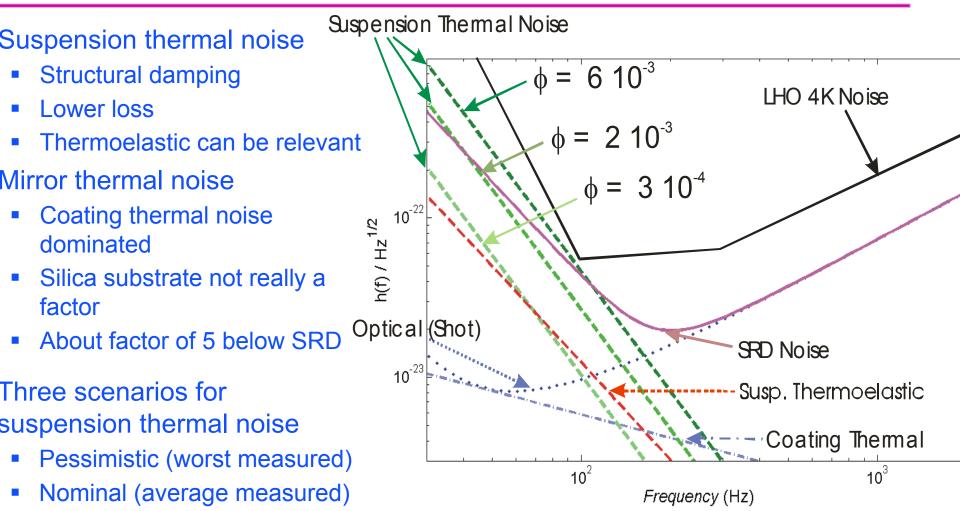
Gregory Harry LIGO / MIT March 15, 2005

LIGO-G050087-00-R



Outline

- Impact of thermal noise on sensitivity
- Measurements of suspension thermal noise
 - Measurements
 - Results
 - Future plans
- Ideas for improving thermal noise
- Measurements of mirror thermal noise
 - Measurements
 - Calculation and limits


Geometry Marchael Noise I

- Science Requirement Document Noise Limited by Suspension Thermal Noise
- 40 Hz to 100 Hz
- Steel wires connected by standoffs to mirror
- Mirror Thermal
- Contributes around 150 Hz
- Based solely on modal Q's measured in laboratory
- Astrophysical reach
- Binary neutron star inspiral range 16 Mpc
- 10 M_o black hole inspiral range 63 Mpc
- Stochastic background 2.3 X 10⁻⁶
- Crab nebula pulsar upper limit (1 year integration time) ε = 1.6 X 10⁻⁵
- Sco X-1 pulsar upper limit (1 year integration time) ε = 3.1 X 10⁻⁷

- Includes a number of overly-conservative and/or outdated assumptions
- Suspension thermal noise
 - Viscous damping (wrong frequency dependence)
 - High level of mechanical loss
 - Mirror thermal noise
 - Modal Q model
 - Coating contribution not included

Impact of Thermal Noise II

Optimistic (material limit)

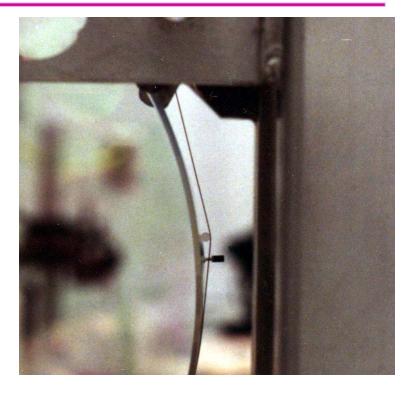
Sensitivity to Sources

	Neutron Star Inspirals	10 M _o Black Hole Inspirals	Stochastic Background	Crab Pulsar (ε limit)	Sco X-1 Pulsar (ε limit)
SRD	16 Mpc	63 Мрс	2.3 10-6	1.6 10 -5	3.1 10 ⁻⁷
φ = 6 10 -3	16 Mpc	60 Mpc	4.7 10 ⁻⁶	2.3 10 -5	3.0 10 ⁻⁷
φ = 2 10 -3	20 Mpc	84 Mpc	1.9 10 -6	1.4 10 ⁻⁵	3.0 10 ⁻⁷
φ = 3 10 -4	26 Mpc	120 Мрс	5.9 10 -7	7.5 10 ⁻⁶	3.0 10 ⁻⁷
Thermoelastic Limit	29 Mpc	140 Mpc	2.7 10 -7	5.7 10 -6	3.0 10 ⁻⁷

Suspension Thermal Noise

$S_x(f) = 4 k_B T g/(m L (2 \pi f)^5) \Phi$

Dissipation Dilution


Restoring force in pendulum is due to both elastic bending and gravity
 Effective loss angle for thermal noise 'diluted' by the ratio

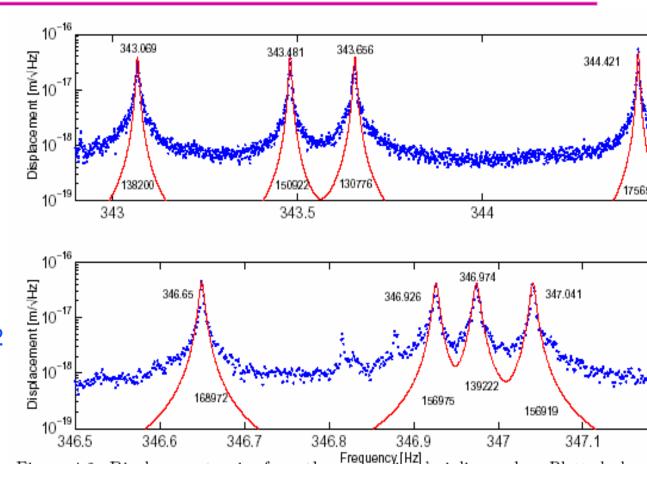
$$\begin{split} \Phi &= k_e / k_g \phi \\ (k_e / k_g)_{\text{violin}} &= 2 / L \ \sqrt{(\text{E I} / \text{T})} \ (1 + 1 / (2 \text{ L}) \ \sqrt{(\text{EI} / \text{T})} \ n^2 \ \pi^2)} \\ &\approx 2 / L \ \sqrt{(\text{EI} / \text{T})} = 3.5 \ 10^{-3} \end{split}$$

Correction for first three violin mode harmonics is negligible

Wires

- C70 Steel
- Mechanical parameters
 - Density 7800 kg/m³
 - Young's modulus 165 X 10⁹ Pa
 - Loss Angle 3 X 10⁻⁴
 > measured in lab setting (Gillespie)
- Thermal parameters
 - Heat capacity 486 J/kg/K
 - Thermal conductivity 49 W/m/kg
 - Thermal expansion 5.1 X 10⁻⁷ 1/K

- Wire dimensions
 - Diameter 150 μm
 - Length 0.44 m



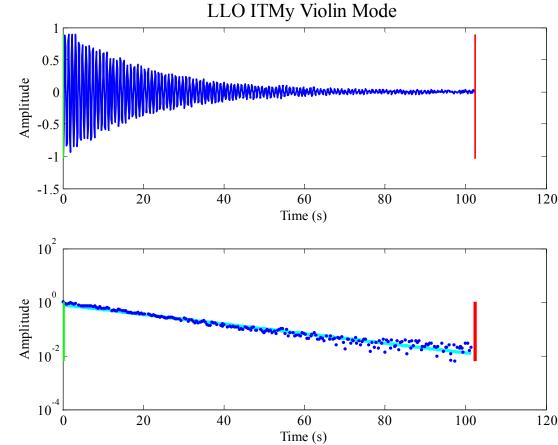
Frequency Domain

- Collect data for ~ 2 h Identify peaks with mirrors
- Fit Lorentzians to peaks

Limitations

- Optical gain drift?
- Get similar results with S2 data as current data with improved wavefront sensors
- Temperature drift can cause central
- frequency to migrate
- Minimal over a few hours

Graphic from R. Adhikari's Thesis

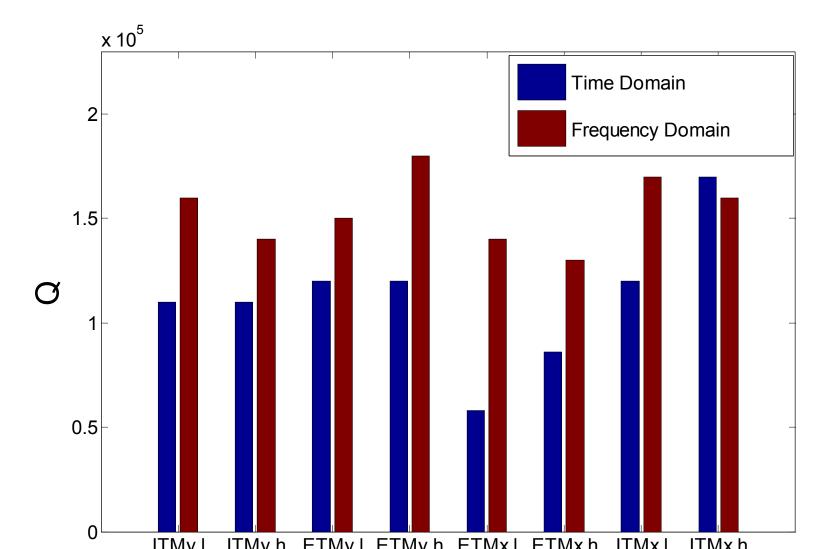


Q Measurements Time Domain

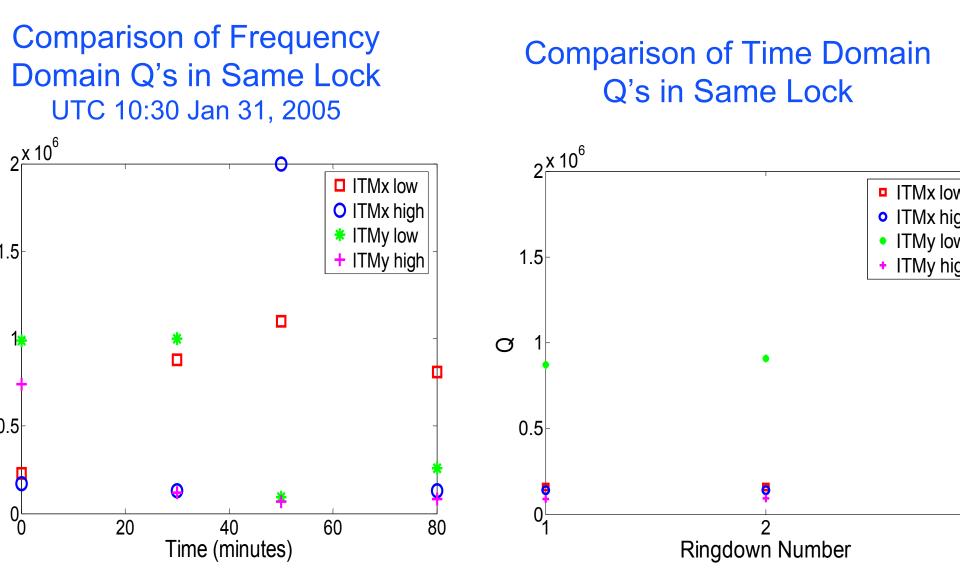
- Excited modes with on resonance drive to coil
- Let freely ring down
- Put notch filters in LSC loop
- Fit data to decaying exponential times sine wave

Limitations

- Must ring up to much higher amplitude than thermal excitation
- No consistent difference between Michelson and Full IFO locks
- Feedback can effect

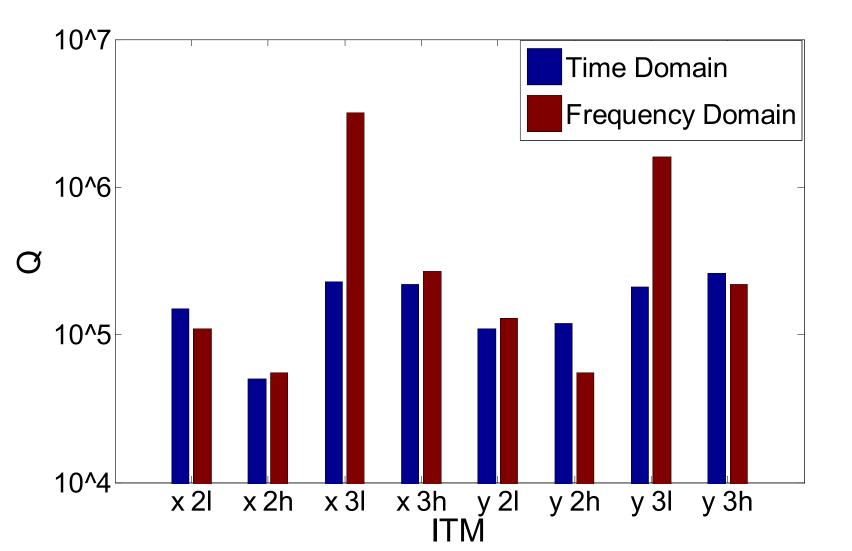

Overview

- Ringdown Q's and frequency domain fits do not agree
- Ringdown Q's repeatable within a lock stretch but frequency domain fits are not
- Results different in different lock stretches
- High harmonics show a little more pattern
 - Still unexplained discrepancies
- Highest Q's consistent with material loss in wires
 - Gillespie laboratory results
- Similar (lack of) patterns in all three IFOS
 - Data from all 3, but more data on H2 than others


Livingston

Comparison of Time Domain and Frequency Domain

Hanford 2K



Hanford 2K/Livingston

Comparison of Time Domain Q's in Different Locks

LHO2K IMTx low	LLO ITMx high
8.6 10 ⁴	1.7 10 ⁵
1.6 10 ⁵	1.4 10 ⁵
1.6 10 ⁵	
1.2 10 ⁵	

Hanford 2K

Hanford

Highest Q's Measured

Frequency Domain	Q	¢
H2K ITMx Third Harmonic	3.2 10 ⁶	8.6 10 ⁻⁵
H2K ITMy Third Harmonic	1.6 10 ⁶	1.7 10-4
H4K ITMy Third Harmonic	9.8 10 ⁵	2.8 10-4
Time Domain		
H2K ITMy Third Harmonic	2.3 10 ⁵	1.2 10 ⁻³
Gillespie Lab Results		3 10-4

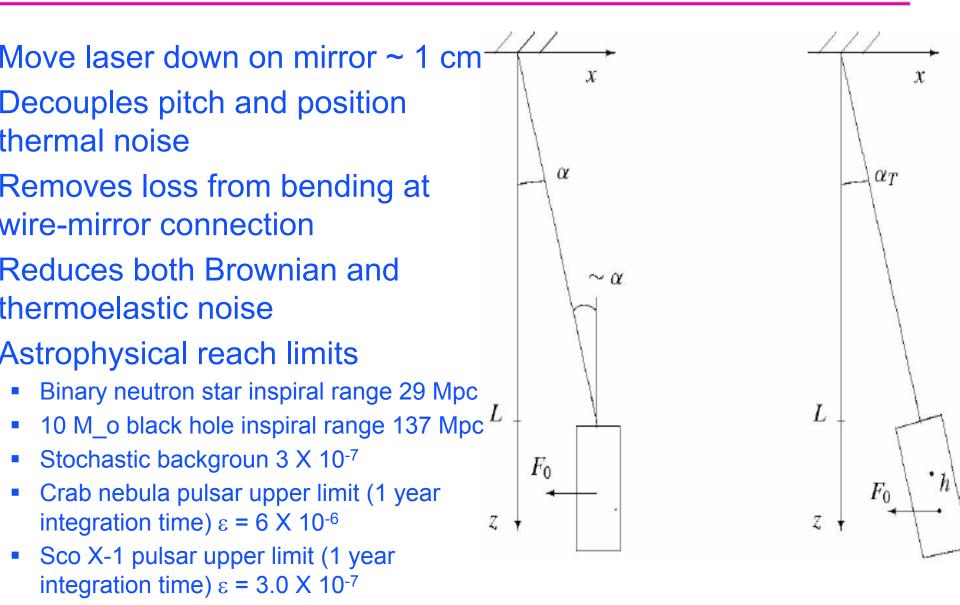
Measurements

- Why the disagreement between t and f domain?
- Is f domain unreliable? Why?

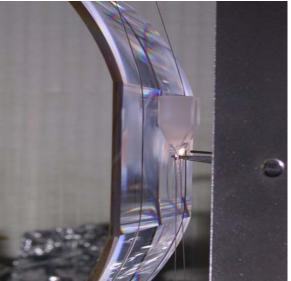
LIGU

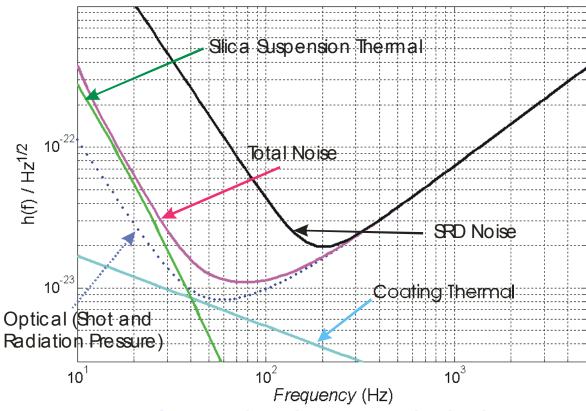
- Changes in instrument over hour time scales? Optical drift? Thermal drift?
- Why changes in ringdowns between lock stretches'
- Changes in suspension during lock?
- Feedback influence on Q's? ASC? LSC and optical spring?
- Why are the highest Q's in f domain third harmonic
- Higher frequency gets away from unity gain frequency of loop?
- Why not seen in t domain?
- How reliable are these numbers?
- Changing thermal noise from lock to lock?

Some Hope for Answers


- Is feedback mechanism feasible?
 - Violin modes coming soon to e2e
- What about loss from optical spring?
 - Thomas Corbitt at MIT has done preliminary modeling
 - Need to have cavity offset from resonance slightly
 - Output Mode Cleaner data shows arm cavities are off resonance by about 1 pm
 - Optical loss from cavity spring would look like mechanical loss
 - Thomas' model needs cavity power, expected Q, measured Q, frequency
 - > For 2.5 kW, Q_{exp} = 10⁶, Q_{meas}=10⁵, f=350 Hz
 - Offset needed 100 pm
 - Does not look likely

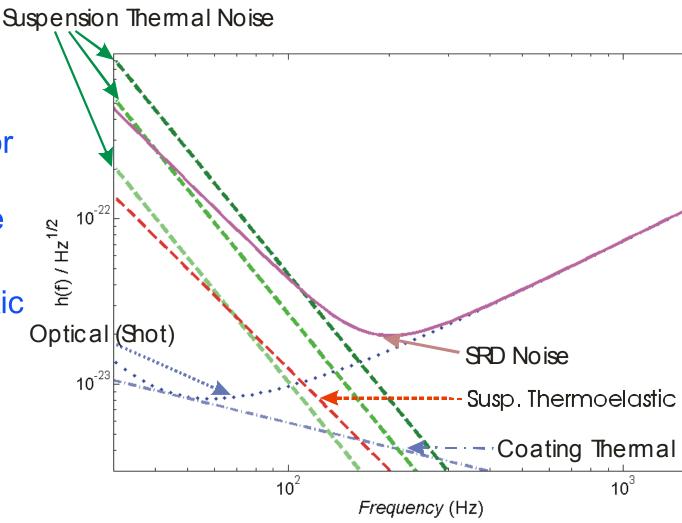
Future Directions


- Modeling and theory
 - Need some ideas
- More time domain data
 - Same and different lock stretches
- Put notch filters in ASC loop
- Measure Q vs. cavity power to assess feedback
 - If Q depends on power, extrapolate back to 0 to get true thermodynamic loss
- Measure more and higher harmonics
 - Get above from loops unity gain frequency
 - Less amplitude for same energy, so less motion of wire
- Collect data on all mirrors and wires


Levin's "Sweet Spot"

Silica Suspension

- Silica ϕ is ~ 3 X 10⁻⁸
- Improvement at low f
- Can be done along with increase in laser power
- How do you connect
- Polish flats on mirror bond ears
- Bond on curved ears
- Epoxy on ears


Astrophysical reach limits

- Binary neutron star inspiral range 63 Mpc
- 10 M_o black hole inspiral range 320 Mpc
- Stochastic background 3 X 10⁻⁸
- Crab nebula pulsar upper limit 1.8 X 10⁻⁶

LIGO

Mirror Thermal Noise

- Contribution from coating and silica substrate
- Coating accounts for almost all expected mirror thermal noise
- Below total noise, even at thermoelastic limit of suspension
- . Potentially bad coating or substrate could cause mirror thermal noise to be higher

Is it relevant?

Suspension ϕ	2 10 ⁻³		2 10-4	
Coating ϕ	4 10-4	2 10-4	4 10-4	2 10-4
BNS Range	20 Mpc	20 Mpc	26 Mpc	26 Mpc
BH/BH Range	80 Mpc	81 Mpc	115 Mpc	116 Mpc
Stochastic	2.2 10 ⁻⁶	2.2 10 ⁻⁶	6.0 10-7	6.0 10-7
Crab Pulsar	1.5 10 ⁻⁵	1.5 10 ⁻⁵	7.7 10-6	7.6 10 ⁻⁶
Coating ϕ limit	8 1	0-4	8	10-4

imit defined as when both BNS and BH/BH range fall more than 5 percent. REO

modal Q's

What value of modal Q would rule out a coating ϕ that could effect sensitivity?

Mode	Coating Energy Ratio	Q Limit
7,8	5.1 10 ⁻⁵	25 10 ⁶
9	5.5 10 ⁻⁵	23 10 ⁶
10,11	2.0 10 ⁻⁵	63 10 ⁶
12,13	4.8 10 ⁻⁵	26 10 ⁶
14,15	2.010-5	63 10 ⁶
16	1.8 10 ⁻⁵	68 10 ⁶
17,18	3.8 10 ⁻⁵	33 10 ⁶
19,20	2.1 10-5	60 10 ⁶

Measured Mirror Modal Q's

IFO	Mirror	Best Measu	urement	Coating
		Mode	Q	
L1	ITMx	20	13.5 10 ⁶	3.5 10 ⁻³
	ITMy	7	3.1 10 ⁶	6.4 10 ⁻³
	ETMy	9	0.7 106	25 10 ⁻³
H2	ITMy	16	6.7 10 ⁶	8.1 10 ⁻³
	ETMx	7	2.8 10 ⁶	7.0 10 ⁻³

Have some high Q data on modes above 20

L1	ITMy	Mode 32	$Q = 1.8 \ 10^6$
H2	ITMy	Mode 32	$Q = 8.6 \ 10^6$
		$Modo \sim 110$	0 - 27 106

Noise

- FEA models of energy distribution to higher mode number
- More Q's
 - Nothing on L1 ETMx, H1 ITMy, ETMx, ETMy, H2 ITMx, ETMy
 - Very little on all H1 optics, H2 ETMx
 - Little data on superpolished ETMs (L1 and H2)
- Perhaps some laboratory measurements of coated spare optics
 - Need the extended FEA results before even considering
 - Keep eye on lab results on scatter and absorption
- Probably not a problem, these measurements are

Conclusions

- Suspension thermal noise has a large impact on astrophysical performance
- Firm prediction of suspension thermal noise is still lacking
- Need more information on violin mode losses
- Current results are numerous but confusing
- No reason to believe suspension thermal noise will be above SRD, some hope that it will be significantly below
- There are ways to reduce suspension thermal noise
 - Some easier than others
- Some need more laboratory research
- Mirror thermal noise not as crucial a question
- Probably won't limit sensitivity
- May want some more modal Q measurements to rule out