

Looking for ripples of gravity with LIGO

Phil Willems, California Institute of Technology

G050074-00-G

LIGO Laboratory

LIGO:

-an experiment to measure gravitational waves from the cosmos

Laser Interferometer Gravitational wave Observatory

What Is A Gravitational Wave?

What Is Gravity?

Sir Isaac Newton, who invented the theory of gravity and all the math needed to understand it

Gravity: the Old School

The Math Worked Perfectly, but...

How does the Earth over here

pull on the Moon over there?

Sir Newton's answer:

LIGO

Then the Math Wasn't so Perfect Anymore...

- Mercury's orbit precesses around the sun-each year the perihelion shifts 560 arcseconds per century
- But this is 43 arcseconds per century too much! (discovered 1859)
- This is how fast the second hand on a clock would move if one day lasted 4.3 billion years!

Urbain Le Verrier, discoverer of Mercury's perihelion shift anomaly Image from St. Andrew's College

Image from Jose Wudka

Einstein's Answer: General Relativity

- Objects move along straight lines (geodesics) through space and time.
- Space and time (spacetime) are curved.
- Thus, although 'straight', geodesics converge and diverge due to spacetime curvature. This looks like a gravitational force.
- Mass curves spacetime.
- Thus, mass has gravity.

Gravitational Waves-

are produced by accelerating objects
are an oscillating strain of space (ripples of spacetime)
travel at the speed of light
are quadrupolar

So, Why Don't We See Them?

- Detectable gravitational waves are only produced by the most violent astrophysical processes
- Even these waves are astonishingly feeble
 - » A very strong gravitational wave will strain space by 1 part in 10,000,000,000,000,000,000,000
 - » The Earth and Moon will get 1 *trillionth* of an inch farther apart as a result

Do We Even Know They Exist?

0

Russell Hulse

LIGO

How on Earth Do You Detect Such a Thing?

Well, you don't have to do it on Earth, but we do.

A 2.5 mile long Michelson interferometer

LGO

The Michelson Interferometer

constructive interference

+

destructive interference

Michelson-Morley Experiment

Result: "The speed of light is the same, whatever the speed of the observer."

Interpretation: the Theory of Relativity

Hanford, WA

LIGO So What If They Exist- Why Look for Them?

- Physicists are fussy- we don't like to believe in anything until we detect it.
- Gravitational waves provide a completely new window to the cosmos.

New Instruments, New Discoveries

optical telescopes

Cygnus A

LIGO

Different Forms of Radiation...

- Originate in different places
- Are caused by different processes
 - » Light, radio waves: generated by heat and moving electric charge
 - » Gravitational waves: generated by moving mass
- Are more or less blocked by intervening matter
 - » Light is blocked by interstellar dust
 - » Gravitational waves pass through everything

Sources of Gravitational Waves 1: Supernovae

- Stars fuse hydrogen into helium within their cores
- This nuclear fusion powers the star-
 - » producing the heat the makes it shine
 - creating the pressure that keeps it from collapsing under its own weight
- But the supply of hydrogen is limited

Sources of Gravitational Waves 2: Neutron Stars and Pulsars

Vela pulsar 🝕

PSR B0329+54

Crab pulsar

This is our favorite source: -very predictable -very powerful

Binary Neutron Star: Inspiral, Collision, Merger

Binary Neutron Stars and "Short and Hard" Gamma Ray Bursts

- Two weeks ago GRB050509b was detected by the Swift satellite, both in the initial gamma ray burst and in the X-ray afterglow- the first time an afterglow of a 'short and hard' burst was detected.
- The afterglow was undetectable after 400s, and a search for the source location is ongoing
- 'Short and hard' GRBs are believed to be the optical signature of binary neutron star collisions

LIGO

Sources of Gravitational Waves 3: The Big Bang

The farther away a galaxy is, the fast it is moving away from us- the Universe is still expanding after its birth in an explosion 15 billion years ago.

LIGO The Heat of the Big Bang is Still Visible

This heat was emitted 300,000 years after the Big Bang. The gravitational waves were emitted within a fraction of a second of the Big Bang.

Sources of Gravitational Waves 4: Truly Bizarre and Unexpected Stuff

