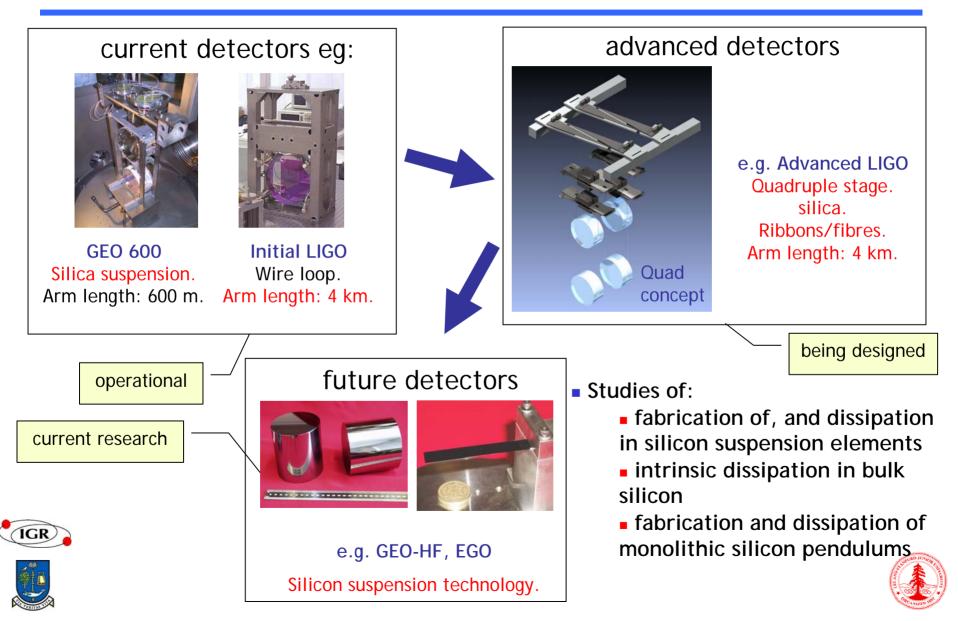
Aspects of silicon for use in the suspensions of gravitational wave detectors

S. Rowan, S. Reid for GEO 600/Stanford Groups

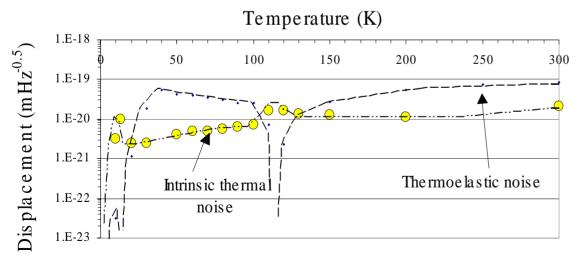
LIGO-G050054-00-Z


Introduction

- To achieve the desired sensitivities of future long-baseline gravitational wave detectors will require a reduction in thermal noise associated with test masses and their suspensions
- Working on extending technology in the development of low dissipation quasi-monolithic suspensions, acquired through designing suspensions for GEO 600 and Advanced LIGO, to:
 - develop ultra-low thermal noise suspensions for EGO and equivalent 3rd generation detections (cryogenic temperatures)

Suspension technology status

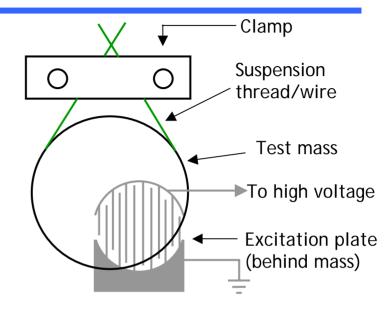
Challenges for future detectors - why silicon?


- To improve shot noise limited sensitivity, future detectors may require higher levels of laser power than currently used
- Require mirror substrates capable of sustaining high thermal loads whilst maintaining optical figure
- Thermally induced deformation of mirror surface is proportional to α/k_{th} [Winkler *et al.*, 1991].
 - α = substrate expansion coefficient
 - k_{th} = substrate thermal conductivity
- Would like a substrate material for which this figure of merit is minimised
- In addition, further reductions in test mass and suspension thermal noise are required
- Possible material meeting these requirements is silicon
- GEO considered silicon mirrors Circa early 90's at that time purchased substrates polished by Zeiss - but laser/diffractive technology not mature at that time
- Over past few years re-visiting this incorporating recent developments
 see talks by Roman and Peter

Mechanical dissipation of silicon

- Two relevant types of mechanical dissipation:
 - "Intrinsic" dissipation (eg: due to point defects or line dislocations)
 - Thermoelastic dissipation, associated with temperature fluctuations throughout the mass (depends on fundamental material properties)
- Silicon can have low intrinsic dissipation but thermal noise at low frequencies dominated by thermoelastic noise
- Both thermoelastic and intrinsic thermal noise may be reduced by cooling:

- Thermoelastic noise is proportional to α and should vanish at T ~120 K and ~18 K where α tends to zero
- Intrinsic thermal noise exhibits two peaks at similar temperatures
- Silicon may allow significant thermal noise improvements at low temperatures but material properties need further study

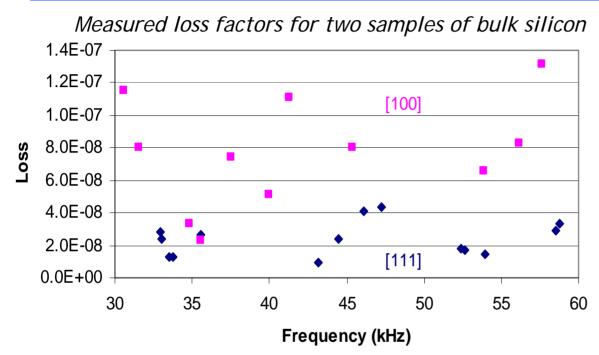


Calculated intrinsic thermal and thermoelastic noise @ 10 Hz in a single silicon test mass, sensed with a laser beam of radius ~ 6 cm

Studies of silicon as a test mass substrate

- Preliminary room T measurements made of mechanical dissipation of bulk silicon samples suspended on silk thread or wire loops
 - Internal resonant modes of the samples excited; decay of mode amplitude measured

Schematic diagram of front view of suspended test mass.


Dissipation of two silicon samples of identical geometry, supplied by collaborators in Stanford, was measured over a range of frequencies.

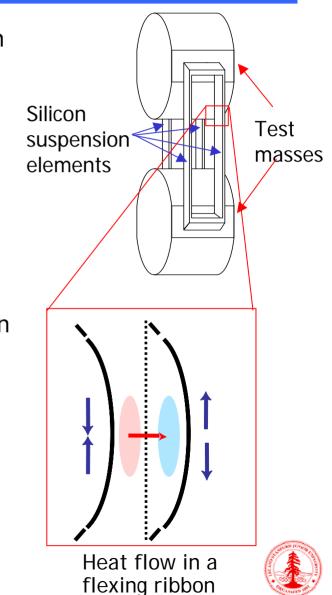
Silicon samples cut along different crystal axes, [111] *and* [100]. *The* [111] *sample was boron-doped.*

Results for silicon at room temperature

The doped [111] sample typically showed lower dissipation, though whether this was due to the crystalline orientation of the sample, the dopant, or some other reason, is as yet unknown.

- Lowest loss obtained so far = $(9.6 + / 0.3) \times 10^{-9}$
- Comparable with the lowest loss factors measured at room temperature
- Plan to extend these measurements to cryogenic temperatures
- Recall, varying dopant concentrations can vary the thermal conductivity of silicon.

IGR


This can impact both levels of thermoelastic dissipation and mirror figure distortion under thermal loads - requires further study.

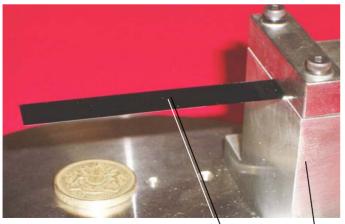
Dissipation in silicon suspension elements

 Thermoelastic dissipation, φ_{th}(ω), is associated with the flexing of thin suspension elements [see,eg: Nowick and Berry]

$$\phi_{th}(\omega) = \frac{E\alpha^2 T}{\rho C} \frac{\omega \tau}{1 + \omega^2 \tau^2} \qquad \tau = \frac{1}{2\rho f_{char}} \qquad f_{char} = \frac{\pi K_{th}}{2\rho C t^2}$$

- These provide a convenient means to study:
 - (a) thermoelastic dissipation and its dependence on material properties and temperature
 - (b) other sources of dissipation associated with suspension elements eg surface effects

Silicon suspension elements

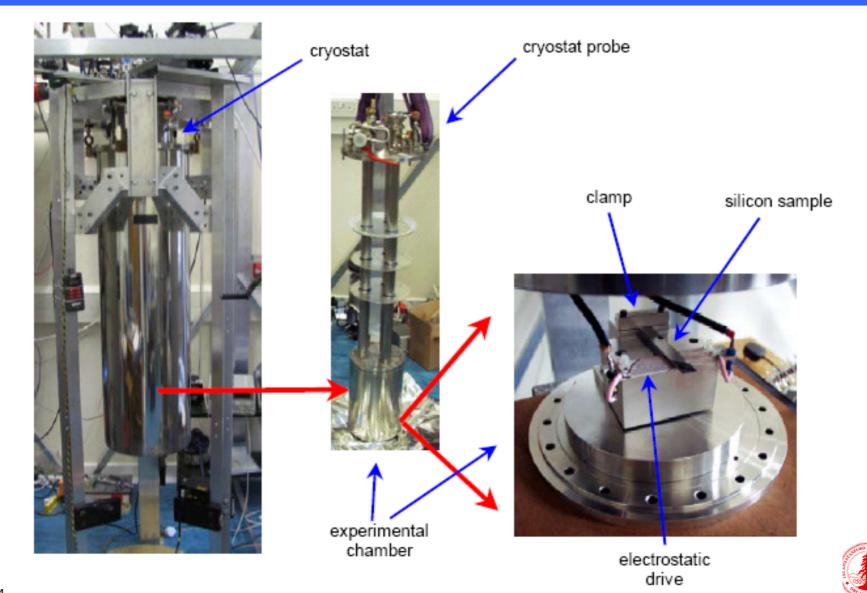

- Initial samples have been fabricated by:
 - machining from bulk pieces of silicon by a commercial vendor

etching from silicon wafers by collaborators at Stanford University

Rigid

clamp

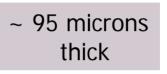
Sample



Set of samples fabricated with varying properties and dimensions:

- ■1 x 10⁻³ Ohm-cm to >100 Ohm-cm
- ■~40 microns to ~100's µm thick


Experimental setup



Experimental measurements

Measurements in progress on first etched samples:

P-type doping (Boron), Resistivity = 10-20 Ohm-cm

- Resonant modes of samples excited using an electrostatic drive
- Sample displacement monitored using shadow sensor
- Measure rate of decay of the mode amplitudes, from which mechanical dissipation, $\phi(\omega_0)$ can be determined. For any mode of amplitude A, and frequency $\omega_{0'}$

$$A = A_0 e^{-\phi(\omega_0)\frac{\omega_0 t}{2}}$$

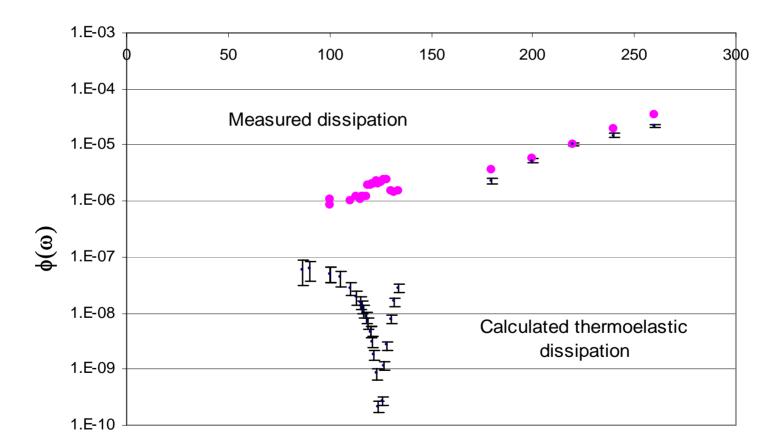
Experimental measurements

 Measured dissipation is the sum of dissipation arising from a number of sources:

$$\phi_{meas}(\omega) = \phi_{thermoelasic}(\omega) + \phi_{bulk}(\omega) + \phi_{surface}(\omega) + \phi_{gas}(\omega) + \phi_{clamp}(\omega) + \phi_{other}(\omega)$$

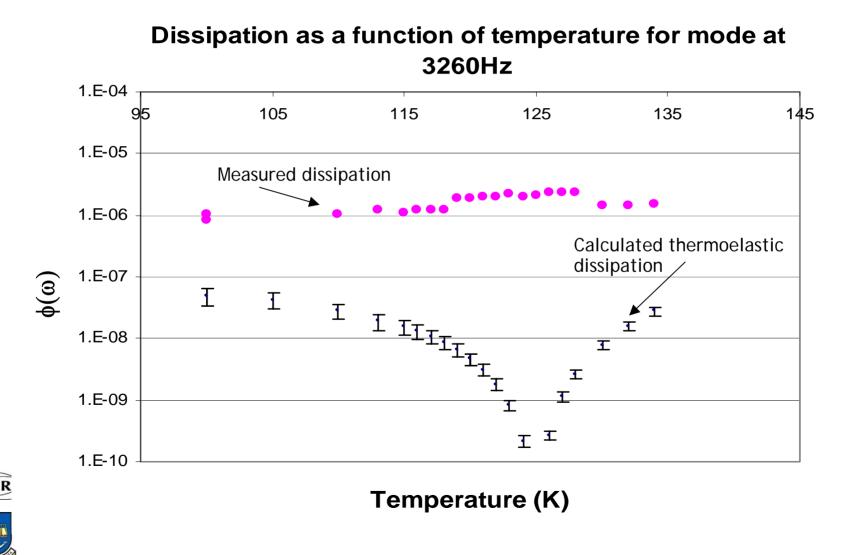
calculate from silicon material properties

measurements of samples of varying surface to volume ratios should allow estimates


measurements rigid clamp in vacuum - holding thick <10⁻⁵ Torr end of sample

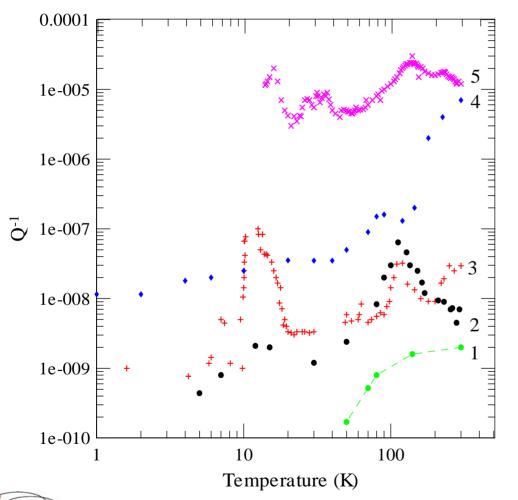
Results - Dissipation as a function of temperature for mode at f = 3260Hz

Loss factors measured from 77K to 260K for first 5 resonant modes (240 to 3260Hz)


Results for 3260Hz mode shown below:

Closer look at dissipation around 125K

Results

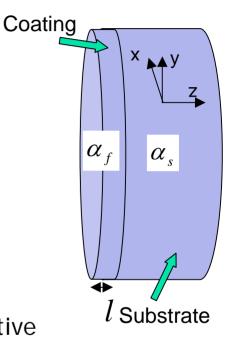

- Similar behaviour for all modes studied
- Investigating magnitude of non-thermoelastic sources of loss for samples of our geometry – in particular:
 - Surface effects (sample is 95 microns thick)
 - Possible coupling to resonant modes of clamp

 $\phi_{meas}(\omega) = \phi_{thermoelastic}(\omega) + \phi_{bulk}(\omega) + \phi_{surface}(\omega) + \phi_{gas}(\omega) + \phi_{clamp}(\omega) + \phi_{other}(\omega)$

The measured dissipation Q⁻¹ in silicon oscillators (kHz frequency band)

- 1 Calculated from "phononphonon" mechanism (f = 10 kHz)
- 2 MSU 1980, unpublished (t ~ 10 cm, f = 10 kHz)
- 3 *D.F. McGuigan et al.*, J.Low Temp.Phys. 30 (1978), 621 (t ~ 10 cm, f = 19.5 kHz)
- 4 *B.H.Houston et al.*, Appl.Phys. Lett. 80 (2002), 1300 (t ~ 100 μm, f = 5.5 kHz)
- 5 *U.Gysin et al.*, Phys.Rev. B69 (2004), 045403 (t ~ 2 μm, f = 10.8 kHz)

Slide courtesy of V. Mitrofanov, Moscow State University


Summarise

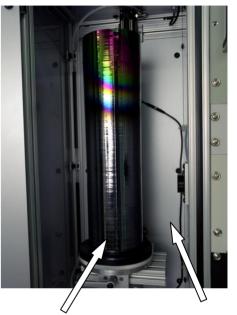
- Dissipation peaks observed by a number of workers
- Peaks occur at a variety of different temperatures in samples of different impurity levels and of different doping (~125K, 130K, 160K, 10-20K etc)
- Needs a systematic study to establish whether suitable samples exist for our purposes
- Carrying this out on a set of samples of different known dopings
- Nb: it is not clear whether there is a fundamental connection between the zeros in the expansion coefficient for silicon and observed dissipation peaks at the corresponding temperatures

Mechanical dissipation from coatings

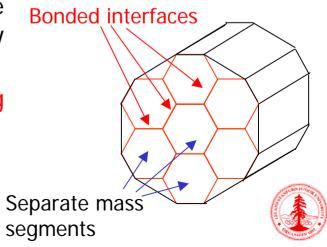
- For future detectors it is vital to reduce, or mitigate the effects of, coating dissipation.
- Potential sources of loss (calculation and expt):
 - Dissipation intrinsic to the coating materials (defects, vacancies etc?)
 - Thermoelastic damping (see Fejer et al, Phys Rev D Braginsky and Vyatchanin, Phys Lett A) resulting from the different thermal and elastic properties of the coating and the substrates
- In both cases resulting thermal noise level depends on relative thermal and elastic properties of coating and substrate
- It follows that the optimum coating for a fused silica or sapphire mass may not be the ideal choice for a silicon mass

Mechanical dissipation in coatings (cont^d)

- Diffractive coatings:
 - If one wants to use silicon as a diffractive optic, either:
 - a diffraction grating can be etched on to the surface of the test mass onto which a coating is applied (Institute for Applied Optics, University of Jena); or
 - the test mass can be coated, and a diffraction grating etched into the coating surface (Lawrence Livermore National Laboratories).
 - Through Roman Schnabel, we have now received (silica) substrates from Jena with diffraction gratings etched onto surface
 - Aim to collaborate with LLNL through Stanford Univ



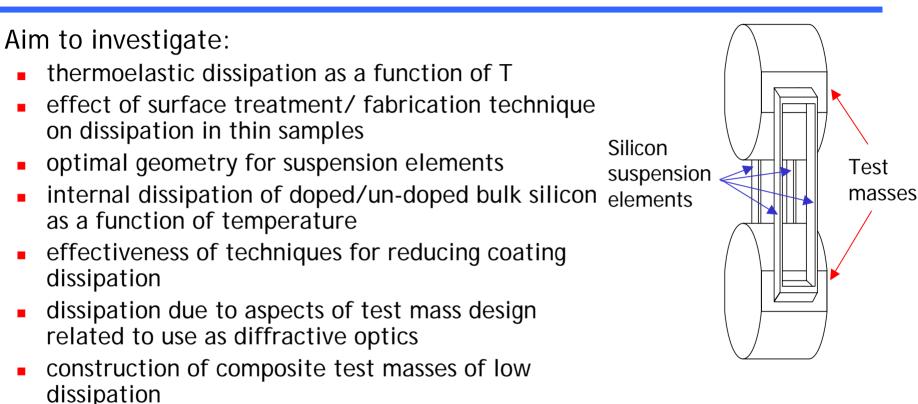
 We will investigate the mechanical dissipation associated with such gratings and coatings (room and cryo T's)



A problem of size

- For 3rd generation detectors, test masses of >50 kg are desirable, to minimise the effects of radiation pressure (see Warren's talk)
- Silicon ingots of 400 mm diameter and 450 kg mass have been manufactured, but are of an aspect ratio which is not optimal for use as a test mass.
- A solution to this could be to use composite test masses, where smaller pieces are joined together without introducing significant excess mechanical dissipation.
- A composite mass could look something like the schematic shown, the adjoining faces possibly joined by silicate bonding.
- Preliminary work carried out on fabricating silicon-silicon bonds

Silicon ingot in growth furnace


Further silicon-silicon bonding tests

- Collaborating with Astrium D in Friedrichshafen
 - Carrying out 16 day thermal cycling tests on silicate-bonded silicon samples
 - Samples will undergo 8 cycles from ambient to below 30K.
 - Should have these results by mid -February

Research goals

 The overall goal of the programme is to develop low dissipation suspensions suitable possible 3rd generation detectors.

 Achieving sensitivities better than Adv LIGO needs more than improvements in thermal noise – silicon substrates may be of attractive for additional reasons