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Introduction

» Coincidence experiments with three (or more!)
wide-band detectors of gravitational waves (GW)
are going to be performed soon.

 They will enhance the likelihood of detection

— For a given false-alarm probability, the detection
threshold can be lowered => more volume of space
can be searched for => more sources can potentially

been seen!

* They will provide a self-consistency check for a
positive observation => they will allow us to

Make Astronomical Observations!



Statement of the Problem

 Making astronomical observations by using the
detectors data means:

— being able to estimate the direction to the source (6,
¢), and

— reconstruct the wave’s two independent amplitudes
(h, (9, h, (D).
 The determination of these four unknowns
orovides the solution of the so called Inverse
Problem in Gravitational Wave Astronomy.

 |n what follows we will investigate the Inverse
Problem for GW Bursts, I.e. signals that last only
for a few milliseconds and do not have “a well
defined” waveform.




Detector Response
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Note: W' can be taken to be equal to zero!

S.V. Dhurandhar & M. Tinto, MNRAS, 234, 663 (1988)
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Network Coordinates

R(1)=F (0,6,0,8,7)h . (£)+F(6,¢,a,B,y )k (1)

e A network of 3 wide-
band detectors gives 3
functions of time R (t)
(k=1, 2, 3), and two
Independent time
delays.

* They provide enough
Information for uniquely
identify the source
location.
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Time-Delays and Antenna Patterns

How do we compute the time delays?

2. How can we take advantage of the asymmetry
of the detectors’ antenna patterns w.r.t. the
symmetry plane in order to uniquely identify the
location of the source in the sky?

One could compute the cross-correlations between
pairs of detectors:

o

C(z) =]Rl(t)R2(t+r)dt

However: Because of the Earth curvature, the
detectors will see two different linear combinations

of h,(t) & h.(t)




Three-Detector Responses

NOISE—FREE DIGITIZED DETECTOR RESPONSES
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Time-Delays and Antenna...(cont.)

Example:

R, (t,) = A (h,. 6,¢) cos(2ft, + ,(6,¢) ~f-F) t, =7
o 12

R,(1) = A (h,.0,9)cos(2Aft, + &, (0 )—-B) /

Wave travel time from detector 1 to 2 Extra delay due to Earth-curvature

« The extra-delay can be significant!

* For the detectors’ locations considered in '89,
the extra delay can be ~ 15% of the exact time

delay => significant inaccuracy in source
location.



AMPLITUDE

Determination of the Time-Delays and
Solution of the Inverse Problem

_et us assume the clocks at each site to be
perfectly synchronized!

NOISE

—FREE DIGITIZED DETECTOR RESPONSES

et us also assume for the moment:

Noiseless detectors.
To know the location of the source in the sky.

Rl (t) = |:1+ (Hs ! ¢s)h+ (t) + le (95 ) ¢s)h>< (t)

=== Ry(t+7°12) = F, (6, 4)h.(t) + F,. (6, )N, (1)
RS (t + Z'513) = I:3+ (05 ) ¢s)h+ (t) + |:3>< (95 ! ¢s)h>< (t)

1(t,0,,0,) = K (6,,8,)R,(t) + K, (O,,8)R, (t + 7°12) + K, (6,, 4, )R, (t +7°13) =0

K1 (9 ' ¢) = F2+ st - F2>< F3+
Kz(g: ¢) = F3+ le - F3>< I:1+
K3 (91 ¢) = F1+ sz - le F2+

-4 =1
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Determination of the...(cont.)

The following two-parameter function

1(t,0,0) =K, (0,0)R, (1) + K, (0,9)R, (t +7,,) + K; (0, 9)R; (t + 7,5)

becomes identically null as (6, ¢) — (6, ¢)

—— L(8, §) = TI °(t, 0, ¢)dt

The function L(0, ¢) also becomes identically null

as (60, 9) = (O, ¢s)!



Least-Squares Method with
Noisy Detector Responses

Ria (t) = R, (t) +A, (t)
Ry (t+7,) =R, (t+7,) + A, (t+7,)
Roy (t+75) = Ry(t+735) + A (t+1755)

A, (t) = Random processes representing the noise in each detector.

1, (t,0,0) =K (0,0)R,, (1) + Ky (0,0)R,, (t+17,,) + K; (0, 9) R, (t+715)

L,(0.4)=— tflf(t,e,qﬁ)dt

1:1 _tz t
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Least-Squares Method with
Noisy Detector Responses (cont.)

If the detectors’ noises are Gaussian distributed,
the minimization procedure can be optimized by
normalizing the function 1,(t, 6, ¢) in the following

way

| (6.6, 4) = K1 AR E) + Ky (0, AR, (t+7,) + Ky (6, #)Ris (1 4735)
T KAO.9)0 + K5 (0.9)0,” +KPs(0.9)0, 1"

L (0,) = — FIK(6, )R, (1) + K, (0, )R, (t+17,,) + Ky (6, PR L+ 7))
AT -t K2(0,9)0,” + K% (0,¢)0,” + K% (0, d)o,’
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How accurate iIs the determination of the
source location with this method?

« For good SNR we expect the solution found by the
minimizer to be close to the actual source location.

 We approximate L,(6, ¢) with a quadratic form in a
nhbh of the minimum:

1 t T
LA(9,¢)=LA<9m,¢m)+}§lﬁ|m (O-009=0,) +2 (00, 9-8,)-H (00,0 4)

* Since at the source location the least-squares
function is normalized to unity, from the equation
above we get:

1- LA(gm’¢m)E%(Hs _em’¢s _¢m)' ILIC (gs _gm’¢s _¢m)T



How accurate Is...(cont.)

 One can solve for (A0, Ad) by diagonalizing the
Hessian matrix.

* By making an orthogonal transformation to
diagonal coordinates (x,, X,) we get:

. 2 . 2
1— LA (9m1¢m) ~ (Xls le) + (XZS X2m)

W/4)  (J14,)

AO=af1/ A +b1/ 4,
Ap=c\Ll A +d 1/ 4,

A
/ (h7)"”

Error box in locating the source in the sky

Q_ﬂ.l_ LA(Hm’¢m)




Accuracy of the Estimated Source Location
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Wave Amplitudes Reconstruction

Once the source location has been identified, one
can reconstruct in 3 distinct ways the two wave

amplitudes:
F R (t+7,) — F Ry (t+1755)
|:2+ I:3>< _ I:2>< F3+
FL Ry (t+75) —F R, (1)
F3+ le o st F1+
F R () -F.R, (t+7,)
|:1+ |:2>< o I:1>< F2+

h+1 (t) =

h+2 (t) -

h+3 (t) =

There exists an Optimal Linear Combination of the
above three expressions for the reconstructed
wave amplitudes.

It is optimal in the sense that it minimizes the root-
mean-squared noise In the reconstructed
waveform.




Wave Amplitudes Reconstruction (cont.)

h+0pt. (t) - a‘+1h+1 (t) + a+2h+2 (t) + a+3h+3 (t)

a+1—|_a'+2 +a+3 =1
This constraint follows from the condition
h+opt.(t) — h+ (t) When Al,2,3 (t) = O

The root-mean-squared error in the reconstructed
waveform iIs equal to

1/2

o, {1 [0 (), @OF d}

oto

We minimize &h, with respect to a,; subject to the
constraint a,, + a+2 +a,;= 1.

The solution exists and Is unique!



Optimally Reconstructed Wave Amplitudes




Can the accuracy of the method be improved?

If we could further reduce the contribution of the
noise to the Least-Squares function, the accuracy
In the location of the source would improve!

Optimal Filtering could be applied if a priori
knowledge of the detector responses would be
available (not our case!)

There exists, however, methods that enable us to
construct a near-optimal filter for the detector
responses from the data themselves!

These methods take advantage of the fact that the
signal has a spectrum distinguishable from that of
the noise.

A fairly crude determination of the optimal filter can
still perform well!!

Numerical Recipes, CUP, 1986, p.417



Can the accuracy of...(cont.)

Note that, in order to incorporate a filtering
procedure within the Least-Squares method, one
can not simply apply filtering to each of the
responses: THE TIME DELAY INFORMATION
WOULD BE ALTERED!

Since the source location is determined by
minimizing the integral of 1%,(t,0,¢), filtering has to
be applied to 1,(t,0,0).

NOISY DIGITIZED DETECTOR RESPONSE R, (t)

SPECTRUM OF THE DIGITIZED NOISY DETECTOR RESPONSE

AMPLITUDE

AMPLITUDE ( x 107/ vz )

........................

= 0 1250
TIME ( milliseconds ) FREQUENCY ( Hertz )



Near-Optimal Filter




Accuracy of the Estimated Source Location
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Summary of Results and Conclusions

e Numerical simulations of the method showed that:

— For broadband bursts of dominant frequency equal to ~1
kHz, with a SNR~10, the source could be located within
a solid angle of ~ 10 sr.

— For SNRs significantly lower than 10 the method could
not distinguish between the two points in the sky.

— For SNRs equal to 1 or less the method looses its
resolution completely.

* This method could be applied to data from triple
coincidence experiments that are planned to take
place In the near future.

* It can be used as “veto” to coincident events, I.e. it
can actually be used for testing the detection
hypothesis!



Summary of...(cont.)

Networks with 4 detectors running in coincidence
have also been analyzed within the “GT” method.

Better sky coverage and angular resolution.

Results published in a conference proceedings (1%t
VIRGO Meeting, 1996).
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Fi.Fix — FixFi+) Functions
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