Extended hierarchical search (EHS) for inspiraling compact binaries

S. V. Dhurandhar

IUCAA

Pune, India

* A. Sengupta, A. Lazzarini, P. Shawhan

LIGO-G040556-00-R

Plan of the Talk

• The 1-step (flat) search with 2PN templates

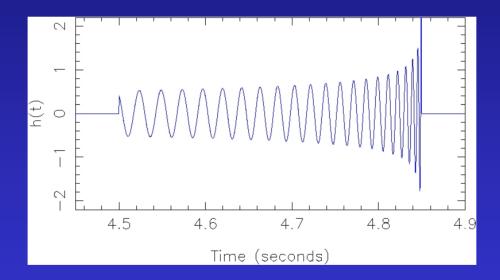
• The 2-step search with hierarchy in masses and decimation in time – Extended Hierarchical Search

EHS

• Implementation and performance

The inspiraling compact binary

- Two compact objects: Neutron stars /Blackholes spiraling in together
- Waveform cleanly modeled



$$h \sim 2.5 \times 10^{-23} \left[\frac{M}{M_{\text{sun}}} \right]^{5/3} \left[\frac{r}{100 \, Mpc} \right]^{-1} \left[\frac{f_a}{100 \, Hz} \right]^{2/3}$$

The restricted PN waveform in the SPA

$$ilde{h}(f) = \mathcal{N} f^{-7/6} \exp i \psi(f; \lambda^{lpha}) + 2\pi i t_c f + i \phi_0$$
 $\psi(f; \lambda^{lpha}) = \sum \theta^i(\lambda^{lpha}) \zeta_i(f)$

2PN and spinless templates: $\zeta_1(f) = f^{-5/3}$, $\zeta_2(f) = f^{-1}$, $\zeta_3(f) = f^{-2/3}$, $\zeta_4(f) = f^{-1/3}$

$$\theta_1 = \frac{3}{128\eta} (\pi M)^{-5/3}$$

$$\theta_2 = \frac{1}{384\eta} \left(\frac{3715}{84} + 55\eta \right) (\pi M)^{-1}$$

$$\theta_3 = -\frac{3\pi}{8\eta} (\pi M)^{-2/3}$$

$$\theta_4 = \frac{3}{128\eta} \left(\frac{15293365}{508032} + \frac{27145}{504} \eta + \frac{3085}{72} \eta^2 \right)$$

The Parameter Space:

Parameters in which the ambiguity function is almost independent of location

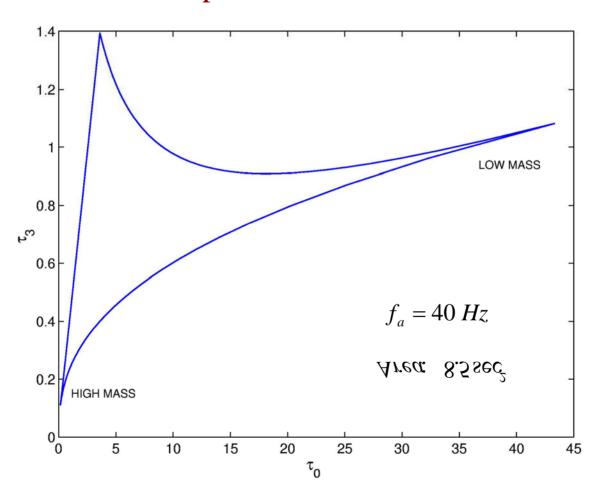
$$\tau_0 = \frac{5}{256\mu M^{2/3}} (\pi f_a)^{-8/3}$$
$$\tau_3 = \frac{1}{8\mu} \left(\frac{M}{\pi^2 f_a^5}\right)^{1/3}$$

$$f_a = 40 \text{ Hz}.$$

Mass Range: $1 M_{\odot} \leq m_1, m_2 \leq 30 M_{\odot}$

Area: $8.5 \sec^2$

Parameter Space for 1 - 30 solar masses



Detection Strategy

Sathyaprakash & SD 91, 94

Owen 96

Signal depends on many parameters:

Parameters: Amplitude, t_a , ϕ_a , m_1 , m_2

Strategy: Maximum likelihood method

- Amplitude: Use normalised templates
- Scanning over t_a: FFT
- Initial phase ϕ_a : Two templates for 0 and $\pi/2$ and add in quadrature
- masses \longrightarrow chirp times: τ_0 , τ_3 bank required

Detection

Data: x (t)
Templates:

Templates: $h_0(t; \tau_0, \tau_3)$ and $h_{\pi/2}(t; \tau_0, \tau_3)$

Padding: about 4 times the longest signal

Fix τ_0, τ_3

Outputs: Use FFT to compute $c_0(\tau)$ and $c_{\pi/2}(\tau)$

 τ is the time-lag: scan over t_a

Statistic: $c^2(\tau) = c_0^2(\tau) + c_{\pi/2}^2(\tau)$: Maximised over

initial phase

Conventionally we use its square root $c(\tau)$

Compare $c(\tau)$ with the threshold η

Thresholding

Mohanty & SD 96,

Mohanty 98

In absence of the signal:

Each $c_0, c_{\pi/2}$ is Gaussian distributed with mean zero.

While $c = \sqrt{c_0^2 + c_{\pi/2}^2}$ is Raleigh distributed:

$$R(c) = c \exp(-c^2/2)$$

1 false alarm/yr, sample at 2 kHz, $n_t \sim 10^4$ at 3% mismatch

Range $1M_{\odot} \leq m_1, m_2 \leq 30M_{\odot}$ - LIGO I curve.

$$\int_{\eta}^{\infty} R(c)dc = P_F \text{ gives } \eta \sim 8.2$$

Detection probability Q_d

Defn: Signal Strength S=c for perfect match of the parameters

c follows a Rician distribution

 \sim Gaussian with mean S, if S >> 1

With two adjacent templates:

For
$$Q_d = .95$$
 we get $S_{minmin} \sim \eta + 0.7$

$$S_{min} \sim 8.2 + 0.7 + 3\% \sim 9.2$$

FLAT SEARCH

Mismatch and Ambiguity Function

$$H(\lambda^{\alpha}, \Delta \lambda^{\alpha}) = \langle s(\lambda^{\alpha}), s(\lambda + \Delta \lambda^{\alpha}) \rangle$$

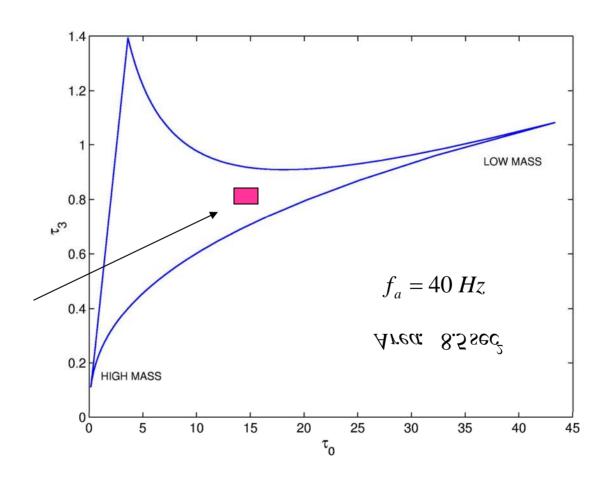
Intrinsic Ambiguity Function:

$$\mathcal{H}(\tau_0, \tau_3; \Delta \tau_0, \Delta \tau_3) = \max_{\Delta t_c, \Delta \phi_0} H(\lambda^{\alpha}, \Delta \lambda^{\alpha})$$

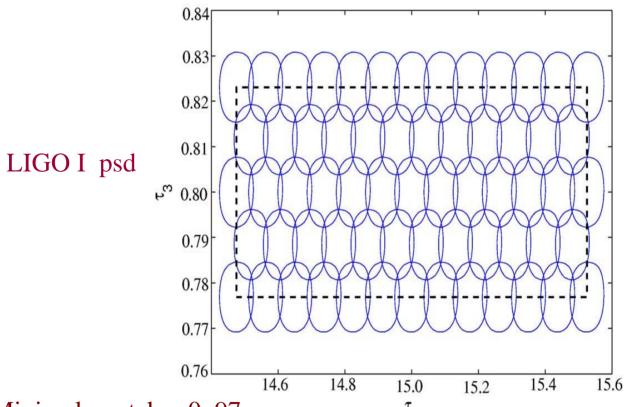
Minimal match = 0.97

Parameter Space

Parameter space for the mass range 1-30 solar masses



Hexagonal tiling of the parameter space



Minimal match: 0.97

Density of templates: $\sim 1300/\text{sec}^2$

Number of templates: ~ 11,050

Cost of the flat search

Longest chirp: 95 secs for lower cut-off of 30 Hz

Sampling rate: 2048 Hz

Length of data train (> x 4): 512 secs

Number of points in the data train: $N = 2^{20}$

Length of padding of zeros: 512 - 95 = 417 secs

This is also the processed length of data

Number of templates: $n_t = 11050$

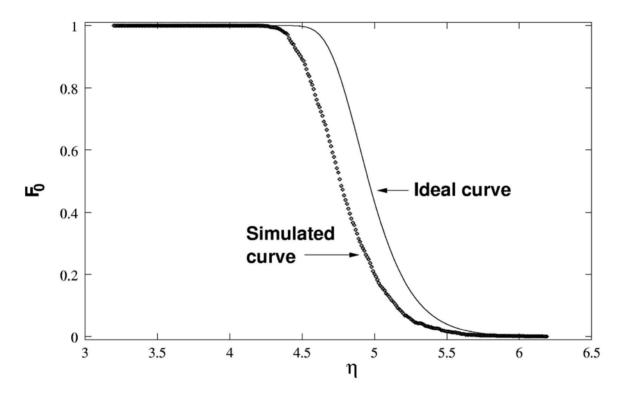
Online speed required: $n_t \times 6 \times \log_2 N / 417$

~ 3.3 GFlop

The hierarchical search

The principle:

- Two thresholds and two banks of templates:
 - Lower threshold: η_1 and a coarse grid of templates
 - Higher threshold: $\eta_2 = \eta$ and the 1-step fine grid of templates
- η_1 sufficiently large few false alarms minimise cost of the fine search.
- η_1 small enough coarse grid minimise cost in the trigger stage.



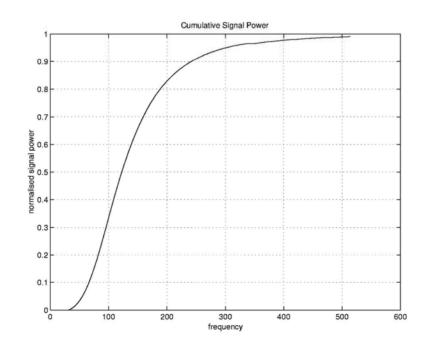
The average number of crossings: $n_c = n_t^{(1)} \times F_0(\eta)$

The extended hierarchical search

Include decimation in time in the previous hierarchical search

Cumulative Signal Power:

92% power at $f_c = 256 \text{ Hz}$



Tanaka & Tagoshi 96

Decimation in time

Use the fact that there is a lot of power at low frequencies in the chirp

At 256 Hz there is 92 % of the signal power

Sample at lower frequencies but lose little in power

Gain in reducing FFT operations in the trigger stage

Choice of the first stage threshold

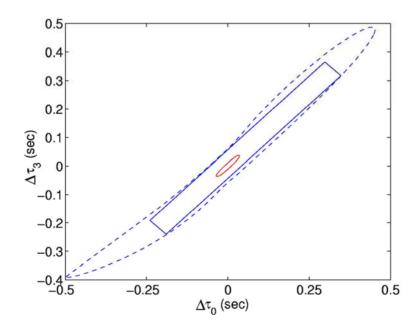
- High enough to reduce false alarm rate
 - -- reduce cost in the second stage
 - -- for 2^{18} points in a data train $\eta_1 > \overline{5}$ or so

• Low enough to make the 1st stage bank as coarse as possible and hence reduce the cost in the 1st stage

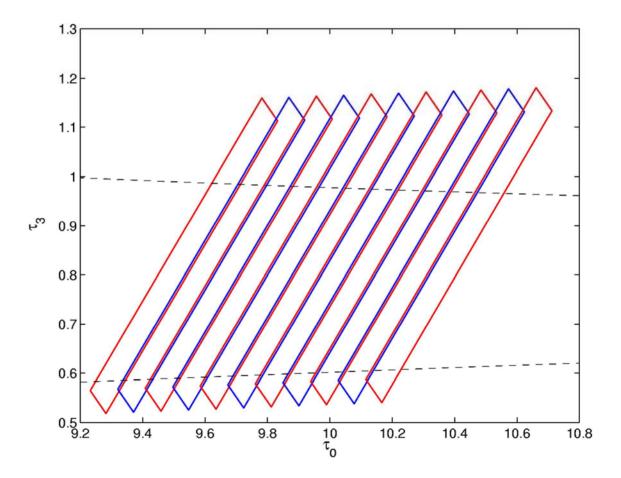
$$\eta_1 = (.92)(S_{min})\Gamma - \Delta S \sim 6$$

Chirp cut at 256 Hz

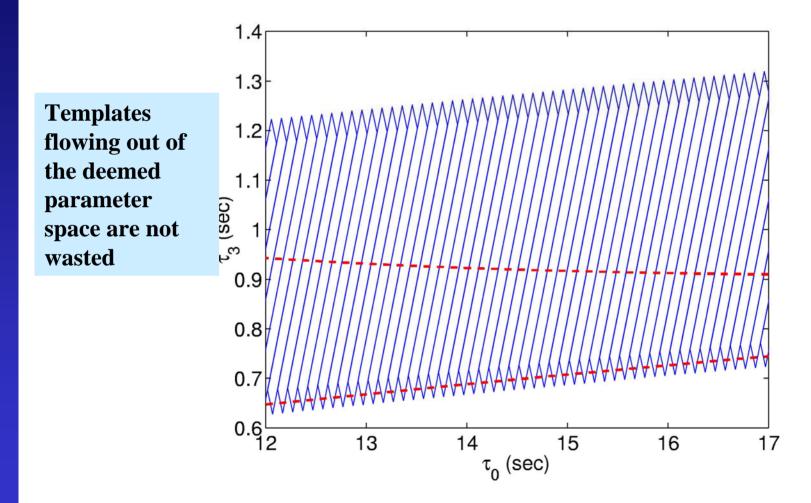
Contour level = $(\eta_1 + \Delta S)/(.92 \times S_{min}) \sim 0.8$



Relative size of boat/ellipse: .97 at 1 kHz and .8 at 256 Hz



Zoomed view near low mass end

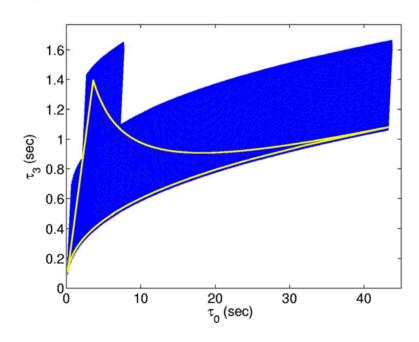


Boundary Effects

Inefficient tiling near the low mass end!!

For low mass cut-off of $1M_{\odot}$:

Need 535 templates



Cost of the EHS

Longest chirp
$$\sim 95 \text{ secs}$$
 $T_{data} = 512 \text{ secs}$ $T_{pad} = 417 \text{ secs}$

$$T_{data} = 512 \text{ secs}$$

$$T_{pad} = 417 \text{ secs}$$

$$f_{samp}^1 = 512 \text{ Hz}$$

$$f^2_{samp} = 2048 \text{ Hz}$$

$$N^{1} = 2^{18}$$

$$N^2 = 2^{20}$$

$$S_{min} \sim 9.2$$

$$\eta_1 = .92 S_{min} \Gamma - \Delta S$$

$$\eta_2 = 8.2$$

$$\Gamma \sim 0.8$$

$$n_1 = 535$$
 templates

~ 6.05

$$n_2 = 11050$$
 templates

$$n_{cross} \sim .82$$

$$S_1 \sim 6 n_1 N^1 \log_2 N^1 / T_{pad} \sim 36 Mflops$$

$$\gamma \sim 20$$

$$S_2 \sim n_{cross} \gamma \alpha 6 N^2 \log_2 N^2 / T_{pad} \sim 13 Mflops$$

$$\alpha \sim 2.5$$

$$S_{flat} \sim 3.3 \text{ GFlops}$$

Gain ~ 68

Performance of the code on real data Work in Progress

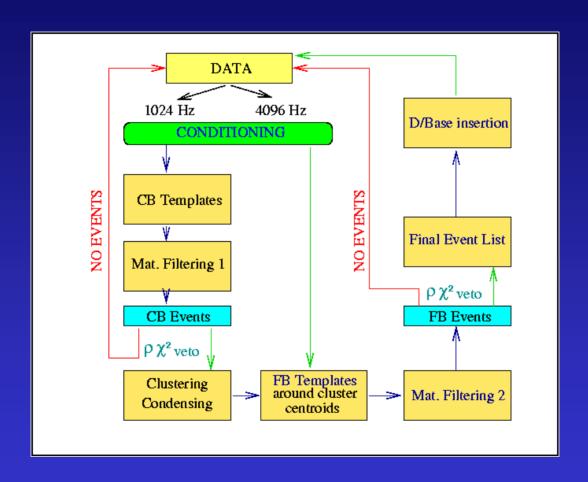
- S2 L1 playground data was used 256 seconds chunks, segwizard data quality flags
- 18 hardware injections recovered impulse time and SNR matched filtering part of code was validated
- Monte-Carlo chirp injections with constant SNR
- 679 chunks test the running of the pipeline

EHS pipeline ran successfully

• The coarse bank level generates many triggers which pass the ρ and χ^2 thresholds

Clustering algorithm

The EHS pipeline



Can run in standalone mode (local Beowulf) or in LDAS

Data conditioning

Preliminary data conditioning: LDAS datacondAPI

- Downsamples the data at 1024 and 4096 Hz
- Welch psd estimate
- Reference calibration is provided

Code data conditioning:

- Calculate response function, psd, h(f)
- Inject a signal

Template banks and matched filtering

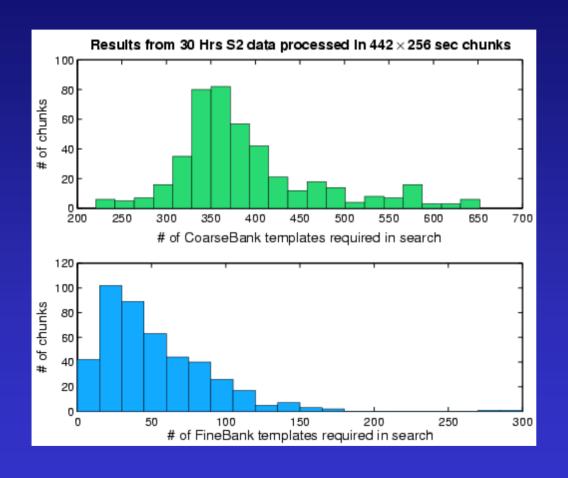
• LAL routines generate fine and the coarse bank

$$MM_{fine} = 0.97$$
 $MM_{coarse} = 0.9$

• Compute χ^2 for templates with initial phases of 0 and $\pi/2$

• Hundreds of events are generated and hence a clustering algorithm is needed

Number of Templates statistics S2 playground data



Indicative of nonstationarity of noise

Total number of data chunks: 442

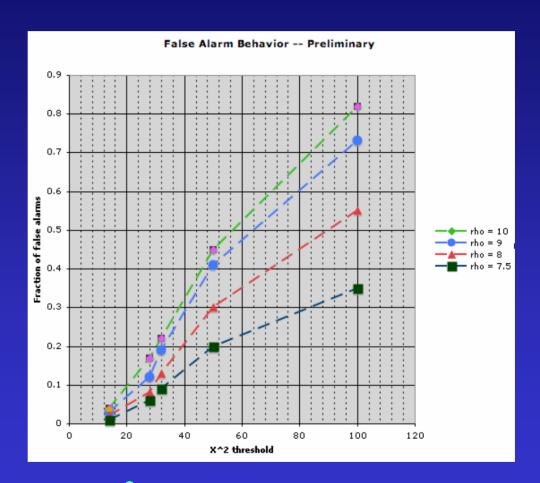
False alarm analysis $(\rho - \chi^2)$ 30 hours of S2 playground data

442 data chunks

x 256 seconds

 $\rho_{\text{threshold}} > 7$:

Total of 21,357 events seen



Making a choice of ρ , χ^2 threshold values

The Clustering Algorithm

Step 1: DBScan algorithm is used to identify clusters/islands

Step 2: The cluster is condensed into an event which is followed up by a local fine bank search

Order of N ln N operations

DBScan (Ester et al 1996)

For every point p
 in C there is a q in
 C such that p is in
 the ε-nbhd of q

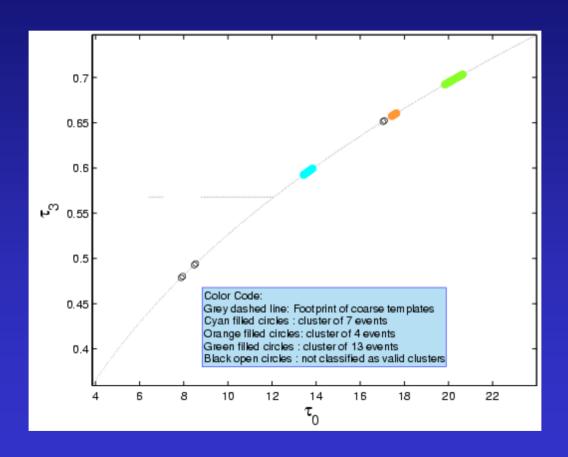
2. This breaks up the set of triggers into connected components



A cluster must have at least N_{min} number of points – otherwise it is an outlier

DBScan implemented on triggers S2 playground data

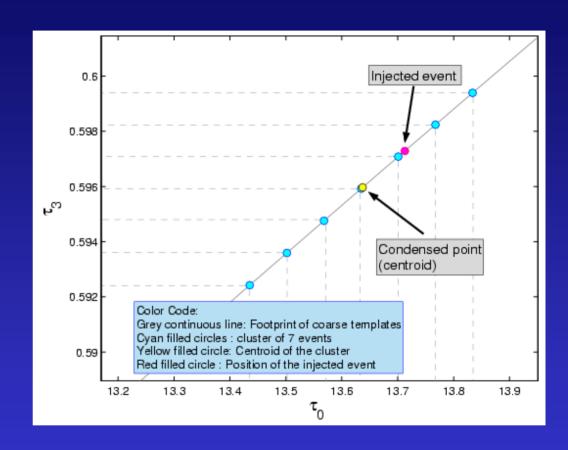
$$\varepsilon \sim 3 \Delta \tau$$
 $N_{min} = 2$



Condensing a cluster

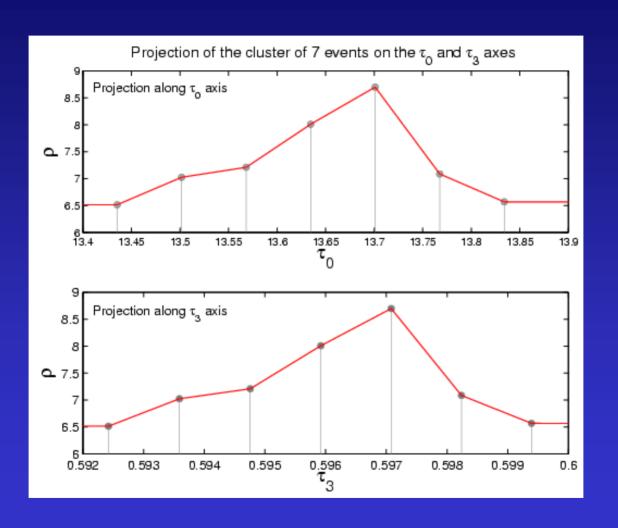
- Non uniform template bank
- Project events in the cluster to the tau 0 and tau 3 axes
- Compute the average signal position by the

Trapezoidal rule:



$$\langle x \rangle = \frac{\sum (\rho_k + \rho_{k+1})(x_k + x_{k+1})(x_{k+1} - x_k)}{2\sum (\rho_k + \rho_{k+1})(x_{k+1} - x_k)}$$

Condensing a cluster: Trapezoidal rule



Conclusions

• Pipeline and code are in place but still need to be tuned/automated

• Gain factors between 7 and 10 on IUCAA cluster

• Galaxy based Monte Carlo simulation is required to figure out the efficiency of detection.

• Hierarchical search frees up CPU for additional parameters - spin