

Status of the LIGO-TAMA Joint Bursts Search

Patrick Sutton LIGO Laboratory, Caltech, for the LIGO-TAMA Joint Working Group

LIGO-G040455-00-Z

- Background
- Science with LIGO-TAMA
- Analysis Overview
- Upper Limits
- Remaining Tasks and Schedule

- The LIGO S2 un-triggered search for generic GWBs at high frequencies has been carried out jointly with TAMA.
 - » LIGO-only search: 100-1100Hz
 - » LIGO-TAMA search: 700-2000Hz
- Philosophy of LIGO-TAMA: Use machinery and techniques common with the LIGO-only low-frequency search
 - » ETGs, coincidence, r-statistic, time lags, MDC simulation frames, low false rate (<<1/S2), rate vs strength upper limits, ...</p>
- Seek optimal ways to combine LIGO and TAMA for best science.

LIGO-TAMA in S2/DT8

LIGO and TAMA look with best sensitivity at different frequencies:

 Tune for signals near minimum of envelope, [700-2000]Hz.

Duty cycles:

H1	74%		
H2	58%		
L1	37%		
T1	81%		

 Take advantage of excellent T1 duty cycle.

Science with TAMA

- TAMA-LIGO 4X search has several interesting features:
 - » 4X coincidence allows for searches with very low false rates (<1/yr).</p>
 - » Extra time lags allow much more accurate background estimates
 - LIGO 2-site network = 47 lags in (-115s,+115s)
 - LIGO-TAMA 3-site network = 47^2 = 2209 lags in (-115s,+115s).
 - » Not yet explored: Extra non-aligned site with long baseline: exploit for sky direction? polarization information?
- But 3X searches also valuable:
 - » Can use TAMA as substitute for a missing LIGO detector.
 - » Eg: H1-H2-T1 coincidence allows us to use the large amount of H1-H2 data that would otherwise be lost because of poor L1 duty cycle (Brady, Cadonati, Katsavounidis; also done in joint inspiral search).

H1-H2-L1-T1	250hr	
H1-H2-]L1-T1	325hr	
H1-H2-L1-]T1	62hr	
total LIGO-TAMA	637hr	
total LIGO-only 3X	312hr	

L1 = L1 not operating

 $T1 \equiv T1$ not operating

- TAMA doubles total usable data set
 - » Better chance of "getting lucky" in a search
 - » Cut rate upper limits in half
 - » Cost: some loss in efficiency (minor effect)

- Response: Analyze all H1-H2-(L1 or T1) data
 - » H1-L1-T1, H2-L1-T1: small amount of data, much higher false rate. Ignore.

LIGO-G040455-00-Z

Analysis: Novel Bits

- 3 independent data sets:
 - » Must derive single upper limit from 3 independent experiments.
- No access to TAMA data (only triggers exchanged):
 - » Compare LIGO-TFClusters triggers to TAMA-Power triggers
 - TFClusters triggers have peak time, duration, SNR, central frequency, and bandwidth.
 - TAMA triggers have peak time, duration, SNR, but no central frequency or bandwidth.
 - Coincidence is based on time overlap only. No SNR or frequency comparison.
 - » No r-statistic test with TAMA

Analysis Pipeline

Simulations

- One set of MDC frames has been exchanged: SG13
 - » sine-Gaussians
 - » Q = 8.9

- » $f_0 = \{700, 849, 1053, 1304, 1615, 2000\}Hz$
- » isotropic sky distribution
- » random linear polarization
- » total ~16800 injections, distributed over LIGO 3X times (H1-H2-L1-T1 and H1-H2-L1-nT1)

Tuning Philosophy

- Use single tuning for all three data sets.
- Tune for best efficiency at each false rate.
 - » single-IFO: use to fix TFClusters parameters
 - » multi-IFO: select bpp/SNR to match efficiencies
- Select multi-ETG rate & r-statistic threshold for << 1 event from background.
 - » H1-H2-L1-T1 and H1-H2-nL1-T1 have ~same observation time, so efficiencies are averaged
 - » H1-H2-nL1-T1 dominates false rate.

From SG13 simulations

Effective coincidence windows:

20ms (LIGO-LIGO) 43ms (LIGO-TAMA)

Chosen single-IFO operating points

Full Data Set Results

- Full data set box has been opened and final upper limits have been calculated.
 - » No surviving coincidences (after r-statistic) for any of the network combinations.
 - » Rate upper limit of 0.13/day.
 - » $h_{rss}^{50\%} = 2x10^{-19}Hz^{-1/2}$ averaged over networks, analysis band.

Network Efficiency

SG13 simulations (Q=8.9 SG over [700,2000]Hz, with sky & polarization averaging)

Different network combinations have similar efficiency (factor ~2 in 50% point).

LIGO-G040455-00-Z

Network Efficiency, by f₀

4X detection

SG13 simulations separately by central frequency

All about the same.

LIGO NA

Network Efficiency, by f_0

3X detection (no L1)

SG13 simulations separately by central frequency

All about the same.

Network Efficiency, by f₀

3X detection (no T1)

SG13 simulations separately by central frequency

Better at lower frequencies – TAMA limits sensitivity there.

Upper Limits

Full data set, including N before/after the R-Statistic:

Network	T (Ms)	Ν	R _{bck} (nHz)	N _{bck}	R _{90%} (1/day)	h _{50%} (Hz ^{-1/2})
H1-H2-L1-T1	0.64*	0/0	<0.75	<5e-4	0.33	2.1x10 ⁻¹⁹
H1-H2-]L1-T1	0.84*	3/0	<27	<0.023	0.25	1.7x10 ⁻¹⁹
H1-H2-L1-]T1	0.14	0/0	<165	<0.023	2.41	0.97x10 ⁻¹⁹
Combined**	1.6	3/0	n/a	<0.046	0.13	1.8x10 ⁻¹⁹

*TAMA livetimes to be finalized.

**Treating all 3 data sets as one experiment (all have N_{bck} ~0).

LIGO-G040455-00-Z

R vs h Upper Limits

R vs h Upper Limits

Summary & Outlook

- TAMA-LIGO joint search for GWBs in S2 is in late stages.
 - » High-frequency search complementary to LIGO-only search at low frequencies.
 - » Two main parts:
 - 4X: very low false rate
 - 3X: lots of additional observation time
 - » No GWB candidates survived pipeline.
 - Rate upper limit of 0.13/day.
 - $h_{rss}^{50\%} = 2x10^{-19}Hz^{-1/2}$ averaged over networks, analysis band.
- Remaining issues:
 - » livetime to be finalized (account for TAMA veto deadtime)
 - » review (esp TFClusters)
- Paper draft in preparation.
 - » Hope to present at GWDAW.
- S3?

LIGO

» Exploring value of joint S3 search with LIGO, TAMA, GEO representatives.