The LIGO Experiment: Status and First Results

Valery Frolov for the LIGO Scientific Collaboration

- Gravity Waves: Sources and Detection
- LIGO Data Analysis and Results
- Outlook: Advanced LIGO

Gravitational Waves

- Predicted by General Relativity: source = energy tensor
- Quadrupolar radiation, two polarizations + and x
- Amplitude is characterized by dimensionless strain *h*:

$$h = \frac{\Delta L}{L}$$
 Note: Effect is tidal

• Strength at earth: $h \sim \frac{G}{c^4} \frac{Q}{r}$

 $\ddot{Q} \cong 4E$ non-spherical part of kinetic energy

• For $r \sim 100$ Mpc, $E \sim M_o$: $h \sim 10^{-22} - 10^{-21}$

Gravitational Wave Detection

Strain sensitivity from shot noise:

$$\delta h \sim \frac{\delta x}{L} \sim \frac{\lambda}{L_0 b \sqrt{N\tau}}$$

 δx is change in length L

Wavelength $\lambda = 1 \ \mu m$

Arm length $L_0 = 4$ km

Number of bounces b = 100

Number of photons per second for 300 W at the beam splitter $dN/dt = 10^{21} \text{ sec}^{-1}$

Strain sensitivity = $6x10^{-22}$ for integration time τ = 0.01 sec

In practice λ is not sufficiently stable: Compare length of two arms interferometrically!

At low frequencies the sensitivity is limited by seismic and thermal noise and at high frequencies by the arm cavity rolloff

August 27, 2004

Gravitational Waves Sources

• Compact binary inspiral:

NS-NS waveforms are well described

- BH-BH waveforms are improving
- test strong field GR, study equation of state
- Supernovae / GRBs:
 - all-sky untriggered searches
 - burst signals in coincidence with signals in electromagnetic radiation/neutrinos
 - study stellar collapse, pulsar formation
- Pulsars in our galaxy:
 - search for observed neutron stars
 - all-sky search computing challenging
- <u>Cosmic Background:</u>
 - metric fluctuations amplified by inflation, phase transitions in early universe, brane-world effects
 - unresolved foreground sources

Valery Frolov – DPF 2004 Meeting

aina

"continuous"

"chirp"

"burst"

"stochastic"

LIGO Observatories

Hanford, WA (H1=4km, H2=2km)

- Interferometers are aligned to be as close to parallel to each other as possible
- Observing signals in coincidence increases the detection confidence
- Measure the direction to the source, the propagation speed and polarization of the gravity waves

LIGO – G040381-00-Z

August 27, 2004

Livingston, LA (L1=4km)

Sensitivity Improvement

LIGO - G040381-00-Z

Overview of LIGO results

No evidence for gravity wave signals to date. Set upper limits:

• NS-NS binary inspirals

- Know wave form. Use matched filtering.
- S1: R_{90%} < 170 events/year/Milky Way Equivalent Galaxy PRD 69(2004)122001 S2: R_{90%} < 50 events/year/MWEG *Preliminary*
- Un-modeled <u>bursts</u>
 - Wave form not known. Use coincidences between two or more ifo's.
 - S1: $R_{90\%} < 1.6$ events/day with $h_{rss} \sim 10^{-17} 10^{-19} Hz^{-1/2} PRD 69(2004)102001$
 - S2: Sensitivity improved by over 1 order of magnitude. Search result pending.

- Coincidence with GRB030329 - 800 Mpc away. Data from two Hanford ifo's. S2: $h_{rss} < 6x10^{-21} Hz^{-1/2}$ around most sensitive frequency region *Preliminary*

- Known <u>pulsars</u> in our galaxy. From radio wave observation: f, df/dt, d^2f/dt^2
 - Time domain method: heterodyne with known phase evolution and fit for GW amplitude and other source-observer parameters
 - S1: Search for pulsar J1939+2134 $h_0 < (1.4+/-0.1) \times 10^{-21} PRD 69(2004)082004$
 - S2: Search for 28 known pulsars $h_0 < 10^{-24} 10^{-22}$ Preliminary

Characterization of a Gravitational Wave Background Radiation

• Assuming GWB is isotropic, stationary, and Gaussian the strength is fully specified by the ratio of energy density in GWs to the critical density

$$\Omega_{GW}(f) = \frac{1}{\rho_{critical}} \frac{d\rho_{GW}}{d(\ln f)}$$

 Ω_{gw}(f) in terms of the strain power spectrum, S_{gw}(f):

$$S_{\rm gw}(f) = \frac{3H_0^2}{10\pi^2} f^{-3}\Omega_{\rm gw}(f)$$

• Strain amplitude scale:

$$h(f) = S_{\rm gw}^{1/2}(f) = 5.6 \times 10^{-22} h_{100} \sqrt{\Omega_0} \left(\frac{100 \text{Hz}}{f}\right)^{3/2} \text{Hz}^{1/2}$$

August 27, 2004

Gravitational Wave Background: Predictions and Experimental Limits

Stochastic GW Data Analysis

- Assume that detector noise n_i(f) dominates the output, P_i(f) - noise power spectrum
- Cross-correlate outputs from two interferometers $s_i(t) = h_i(t) + n_i(t)$
- Operator Q(t) weights the cross-correlation according to the signal-to-noise ratio at each frequency
- Overlap reduction function $\gamma(t)$ accounts for separation and angle between two detectors

$$Y = \iint dt_1 dt_2 \ s_1(t_1) \mathcal{Q}(t_1 - t_2) s_2(t_2)$$

$$\overline{Y} = \frac{T}{2} \int df \ \gamma(|f|) S_{gw}(|f|) \widetilde{\mathcal{Q}}(f)$$

$$\sigma_Y^2 \approx \frac{T}{4} \int df \ P_1(|f|) |\widetilde{\mathcal{Q}}(f)|^2 P_2(|f|)$$

$$\tilde{Q}(f) \propto rac{\gamma(f)S_{gw}(f)}{P_1(f)P_2(f)}$$
 Signal
Noise

$$S_{gw}(f) \propto 1/f^3$$
 for $\Omega(f) = \Omega_0 = const$

$$SNR = \frac{\overline{Y}}{\sigma_Y} \propto \Omega_0 \sqrt{T}$$

August 27, 2004

Instrumental Noise Sources

- Power lines are coherent between LLO and LHO on time scale of 1 minute but became incoherent on time scale of analysis
- DAQ timing is based on GPS. Data are buffered on each site. Produces very small but correlated signal at 16Hz and harmonics.
- Stable clocks, e.g. 70 Hz sync rates of computer monitors
- Correlated frequencies are left out from correlation integral
- No broadband correlation between the sites has been seen so far. Possible source is correlated magnetic field disturbance, e.g. from lightning strikes.
- Broadband correlation between two LHO detectors:
 - acoustic noise: beam clipping and back scattering
 - up conversion from nonlinear coupling: low frequency signals from seismic motion and power lines

LIGO Results and Expected Sensitivity

August 27, 2004

Looking Ahead

- LIGO was always planned for a series of upgrades; the second generation detector is <u>Advanced LIGO</u>, with a factor of ~10 improvement in strain sensitivity
- Proposal has been submitted to the NSF
- Expecting to begin data taking in 2011.

Because LIGO measures GW <u>amplitude</u>, an increase in strain sensitivity by 10 gives an increase in sampling volume and event rate by ~1000

Advanced LIGO

Increased laser power: $10 \text{ W} \rightarrow 180 \text{ W}$ Improved shot noise

Increased test mass: $10 \text{ kg} \rightarrow 40 \text{ kg}$ Compensates increased radiation pressure noise

Potentially new test mass material: Fused silica → Sapphire Lower internal thermal noise in detection band

New suspensions: Single → Quadruple pendulum Lower suspension thermal noise in bandwidth

Improved seismic isolation: Passive → Active Brings seismic "wall" to ~10 Hz

Signal recycling: Tunable sensitivity

What Will We See?

August 27, 2004

LIGO – G040381-00-Z