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The X-arm interferometer test 
of HEPI at LIGO Livingston

J. Giaime, Louisiana State University & LIGO Livingston.

G040358-00-D, LSC meeting, LIGO Hanford, 18 August 2004.
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Development history

• Decades of R&D on quiet hydraulics with Dan DeBra at Stanford, focussing on use of laminar 
flow oil to actuate machine tool assemblies.

• Recent development & prototyping of zero-stiction balanced bellows quiet hydraulic actuators, by 
DeBra, Hardham, Lantz et al, intended for use in Advanced LIGO pre-isolation stage.  2-DOF 
test stand experiment.

• Study by Hua et al of effective control filter techniques for ‘sensor correction’ active seismic 
isolation at sub-hertz frequencies.

• Design of third-generation actuator, payload suspension springs, and external housing for HEPI by 
Hardham, Hammond, Mason, Kern, Lacour, etc.

• Tests at LASTI (ongoing) by Mason, Hardham, Coyne, Lantz, Mittleman, Ottaway, Sarin, Macinnis, 
etc.  New ‘safe’ fluid in use, tested at CIT.

• Re-implementation of control system and electronics for LIGO/VME environment and GDS by 
Bork, Sarin, Abbott(s), etc.

• Mass production and installation at LLO, by Kern, Abbott, Spjeld, Lacour, Traylor, Overmier, 
Mailand, Hanson, Carter, and many more.

• Hardware/software commissioning at LLO by Abbott, Traylor, Overmeir, Hanson, Fyffe, Wooley, 
Sellars, Parameswariah, etc.

• Controls commissioning/ testing at LLO by Mittleman, O’Reilly, Coyne, Lantz, Giaime, Frolov, etc.
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Active noise reduction
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Low-frequency pre-isolation
• At each tank corner pier, there is a sensor/actuator set, vertical and horizontal.

• Each DOF controlled with respect to HEPI displacement sensors and geophones.

• Displacement sensor corrected for floor motion as measured by Streckeisen STS-2., 
in x, y, z DOF’s. 
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Hydraulic bridge actuation

1. Pressure-stabilized pump.

2. four-valve flow-resistance 
bridge.

3. pipes connect bridge to 
actuator.

4. Stiction-free bellows on each 
side of actuated plate.

5. Actuated plate connected to 
payload through 1-DOF 
linkage.
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Valve issues
• Electrically-controlled valve bridge is central to 

the design.

• Three valve-related failure modes have been 
observed.

‣ Gross imbalance in actuation with zero 
drive; may be due to particles in the fluid 
path or blocking the armature.  In some 
cases this has shown to be leakage in the 
non-valve parts of the actuator.

‣ abnormally low ‘gain.’  Not understood, but 
may be due to crud or particles.

‣ oscillation (due to too-high fluid pressure.)
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Installation and Commissioning
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Pier actuation system
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LVEA pump stations
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Commissioning 
procedure

1. Manual sensor & actuator 
check-out, platform alignment.

2. Automated system 
identification of 8 input, 16 
output, plant.

3. Feedback servo design and 
implementation for x, y, z, rx, ry, 
rz and two overconstrained 
DOFs.

4. Sensor correction sys-id, using 
portable witness geophones.

5. Sens. correction filter design 
and implementation for x, y, z.
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Polyphase highpass FIR for sensor correction (W. Hua)

• Seismometers cannot easily distinguish between horizontal acceleration and 
ground tilt & thermal artifacts.

• Below 0.1 Hz, there is very little coherence between STS-2 seismometer signals 
and the LIGO detector DOFs.

• Challenge: low-frequency cut-off of seismometer-based sensor correction signal, to 
avoid tilt and thermal pickup from seismometer.  This filter should roll up as 
steeply as possible, while allowing magnitude and phase accuracy above 0.1 Hz

• Hua’s design implemented by R. Bork for LIGO/vx-works front end code.
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Vertical and transverse performance
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ITMX: Vertical TF from floor to crossbeam (out-of-loop)
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X, yaw and pos performance
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Detector disturbance levels
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• Data from R. Adhikari’s MIT Ph.D. thesis (2004) of the LLO detector.

• Bulk of RMS disturbance comes from 0.1–2.1 Hz band.  1 μm rms is consistent with detector 
operation.  Also, 1 μm/s rms velocity is the practical limit for reliable lock acquisition.
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X-arm length disturbance, quiet evening

Frequency (Hz)

10
-2

10
-1

1 10

Frequency (Hz)

10
-2

10
-1

1 10

)
2/

1
z

H/
s/

m( 
D

S
A

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

X-arm velocity noise with HEPI

HEPI on, sensor correction on

", rms

HEPI on, sensor correction off

", rms

HEPI off, sensor correction off

", rms

X-arm velocity noise with HEPI



16

X-arm length disturbance, noisy afternoon
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• Noisy afternoon of Aug 10, 2004 had a BLRMS ground velocity 1–3 Hz 
monitor value between the 90th and 95th percentiles.

• With HEPI in use, we expect the LLO detector to work on such a day, with 
factor of 2 headroom. 
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Band-limited rms velocity monitor statistics
• Analysis of 600+ days of BLRMS data from LIGO PEM 

seismometers: E. Daw et al, Class. Quantum Grav. 21, 2255
-2273. (2004) 

‣ 1–3 Hz: 4–7 x higher at LLO. 

‣ 0.3–1 Hz: 5–7 x higher at LLO.

‣ 0.1–0.3 Hz: 3 x higher at LLO.

site chan
90%,
µm/s

llo/lho

LLO

lvea x 0.31 4.0

lvea y 0.29 3.6

ex x 0.34 4.5

ey y 0.75 7.3

LHO

lvea x 0.078

lvea y 0.083

mx x 0.077

my y 0.10

example: 1–3 Hz 90th percentile values
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Torture-test data
• Data taken during very noisy episodes during S2, when we could not  

reliably lock the LLO detector.

• RMS acceleration, velocity and displacement calculated between 20 mHz 
and 16 Hz tabulated, for EY Y - EX X + LVEA X - LVEA Y.

• Worst day that we observed, if suppressed by HEPI as currently 
performing, would probably permit interferometer lock.

data file Displacement Velocity Acceleration

Enormous 
µseism

63 µm p-p 35 µm/s p-p 180 µm/s2 p-p

11 µm rms 4.8 µm/s rms 17 µm/s2 rms

Day Train
13 µm p-p 13 µm/s p-p 150 µm/s2 p-p

1.7 µm rms 1.6 µm/s rms 17 µm/s2 rms

Borderline 
day

30 µm p-p 18 µm/s p-p 150 µm/s2 p-p

4.6 µm rms 2.5 µm/s rms 17 µm/s2 rms
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What about the train?

• Data from day with high microseism, 
with and without train, looking at EY Y 
seismometer, which bears the brunt of 
the train.

• Also, these data show a set of 
nightmare microseism graphs.

• Train vibration energy falls mainly in 
the 1–2 Hz band, which is reduced 
well by HEPI.  Some falls just above the 
HEPI band.
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Remaining tasks

• Complete basic functionality on 6 more payloads

• Optimized sensor gains and whitening to make saturation less 
likely during extreme storms.

• Lock/unlock scripts, interfaced with watchdog function, to 
automate HEPI operation.

‣ 3-stage watchdog, switches among servo & sensor correction, servo only, 
offset only, or HEPI off.

‣ Simplified operator’s EPICS screen.



21

Methods for improvement
• Resonant gain in the geophone-based inertial-feedback 

controller to lower the stack mode excitation, and/or the 
test mass bounce mode.  This is a challenge, as it makes 
sensor correction filter performance more sensitive to 
small plant changes, perhaps involving non-minimum phase 
zeros; we will try it of course. 

• Control reallocation from test mass suspension OSEMS to 
HEPI.  This will certainly be done at tidal frequencies, 
where the blend effects will have only a small effect on 
sensor correction.

• Adaptive sensor correction, to adjust the correction filter 
as conditions change.  This is under study at LASTI. 




