

The X-arm interferometer test of HEPI at LIGO Livingston

J. Giaime, Louisiana State University & LIGO Livingston.

Development history

- Decades of R&D on quiet hydraulics with Dan DeBra at Stanford, focussing on use of laminar flow oil to actuate machine tool assemblies.
- Recent development & prototyping of zero-stiction balanced bellows quiet hydraulic actuators, by DeBra, Hardham, Lantz et al, intended for use in Advanced LIGO pre-isolation stage. 2-DOF test stand experiment.
- Study by Hua et al of effective *control filter techniques* for 'sensor correction' active seismic isolation at sub-hertz frequencies.
- Design of third-generation actuator, payload suspension springs, and external housing for HEPI by Hardham, Hammond, Mason, Kern, Lacour, etc.
- Tests at LASTI (ongoing) by Mason, Hardham, Coyne, Lantz, Mittleman, Ottaway, Sarin, Macinnis, etc. New 'safe' fluid in use, tested at CIT.
- Re-implementation of control system and electronics for LIGO/VME environment and GDS by Bork, Sarin, Abbott(s), etc.
- Mass production and installation at LLO, by Kern, Abbott, Spjeld, Lacour, Traylor, Overmier, Mailand, Hanson, Carter, and many more.
- Hardware/software commissioning at LLO by Abbott, Traylor, Overmeir, Hanson, Fyffe, Wooley, Sellars, Parameswariah, etc.
- Controls commissioning/ testing at LLO by Mittleman, O'Reilly, Coyne, Lantz, Giaime, Frolov, etc.

Active noise reduction

 $d(\omega)$

Feedback

 $y = (I + GK)^{-1}GKr$ command tracking $+ (I + GK)^{-1}G_{d} d$ disturbance suppression $-(I+GK)^{-1}GKn.$ noise environmental environment disturbance Feedforward sensor noise n_d(ω) $K_{\rm ff}G_{\rm ff}G = G_{\rm d} \Rightarrow$ noise cancellation feed-forward measured K_{ff}(s) controller environment Sensor Correction M corrects error signal within servo loop system G_{ff}(s) dynamics

G_d(s) feedback command "real" controller input output ► y(ω) K(s) G(s) $r(\omega)$ y_m(ω) M(s) measured + sensor output other sensor In(ω) noise correction measurements

Low-frequency pre-isolation

- At each tank corner pier, there is a sensor/actuator set, vertical and horizontal.
- Each DOF controlled with respect to HEPI displacement sensors and geophones.
- Displacement sensor corrected for floor motion as measured by Streckeisen STS-2., in x, y, z DOF's.

Hydraulic bridge actuation

- I. Pressure-stabilized pump.
- 2. four-valve flow-resistance bridge.
- 3. pipes connect bridge to actuator.
- 4. Stiction-free bellows on each side of actuated plate.
- Actuated plate connected to payload through I-DOF linkage.

Valve issues

- Electrically-controlled valve bridge is central to the design.
- Three valve-related failure modes have been observed.
 - Gross imbalance in actuation with zero drive; may be due to particles in the fluid path or blocking the armature. In some cases this has shown to be leakage in the non-valve parts of the actuator.
 - abnormally low 'gain.' Not understood, but may be due to crud or particles.
 - oscillation (due to too-high fluid pressure.)
 Flow in the DYP-2S

Parker DYP-2S valve

The new nozzle

Installation and Commissioning

Skogestad Postlethwait

MULTIVARIABLE FEEDBACK CONTROL

Pier actuation system

LVEA pump stations

Commissioning procedure

- I. Manual sensor & actuator check-out, platform alignment.
- Automated system identification of 8 input, 16 output, plant.
- Feedback servo design and implementation for x, y, z, rx, ry, rz and two overconstrained DOFs.
- 4. Sensor correction sys-id, using portable witness geophones.
- 5. Sens. correction filter design and implementation for x, y, z.

Polyphase highpass FIR for sensor correction (W. Hua)

- Seismometers cannot easily distinguish between horizontal acceleration and ground tilt & thermal artifacts.
- Below 0.1 Hz, there is very little coherence between STS-2 seismometer signals and the LIGO detector DOFs.
- Challenge: low-frequency cut-off of seismometer-based sensor correction signal, to avoid tilt and thermal pickup from seismometer. This filter should roll up as steeply as possible, while allowing magnitude and phase accuracy above 0.1 Hz
- Hua's design implemented by R. Bork for LIGO/vx-works front end code.

Vertical and transverse performance

X, yaw and pos performance

Detector disturbance levels

- Data from R.Adhikari's MIT Ph.D. thesis (2004) of the LLO detector.
- Bulk of RMS disturbance comes from 0.1–2.1 Hz band. 1 μ m rms is consistent with detector operation. Also, 1 μ m/s rms velocity is the practical limit for reliable lock acquisition.

X-arm length disturbance, quiet evening

X-arm length disturbance, quiet evening

X-arm length disturbance, noisy afternoon

- Noisy afternoon of Aug 10, 2004 had a BLRMS ground velocity 1-3 Hz monitor value between the 90th and 95th percentiles.
- With HEPI in use, we expect the LLO detector to work on such a day, with factor of 2 headroom. 16

Band-limited rms velocity monitor statistics

- Analysis of 600+ days of BLRMS data from LIGO PEM seismometers: E. Daw et al, Class. Quantum Grav. 21, 2255 -2273. (2004)
 - ▶ 1-3 Hz: 4-7 x higher at LLO.
 - ▶ 0.3–1 Hz: 5–7 x higher at LLO.
 - 0.1–0.3 Hz: 3 x higher at LLO.

example: I-3 Hz 90th percentile values

site	chan	90%, µm/s	llo/lho
LLO	lvea x	0.31	4.0 ·
	lvea y	0.29	3.6
	ex x	0.34	4.5 [·]
	ey y	0.75	7.3
LHO	lvea x	0.078	
	lvea y	0.083	
	mx x	0.077	
	my y	0.10	

17

Torture-test data

- Data taken during very noisy episodes during S2, when we could not reliably lock the LLO detector.
- RMS acceleration, velocity and displacement calculated between 20 mHz and 16 Hz tabulated, for EYY - EX X + LVEA X - LVEA Y.
- Worst day that we observed, if suppressed by HEPI as currently performing, would probably permit interferometer lock.

data file	Displacement	Velocity	Acceleration
Enormous µseism	63 µm p-p	35 µm/s p-р	180 μm/s ² p-p
	II μm rms	4.8 µm/s rms	I7 μm/s ² rms
Day Train	I3 μm p-p	I3 μm/s p-p	I 50 µm/s ² р-р
	I.7 μm rms	I.6 µm/s rms	I7 μm/s ² rms
Borderline day	30 µm р-р	18 μm/s p-p	I 50 µm/s ² р-р
	4.6 µm rms	2.5 µm/s rms	I7 μm/s ² rms

What about the train?

- Data from day with high microseism, with and without train, looking at EYY seismometer, which bears the brunt of the train.
- Also, these data show a set of nightmare microseism graphs.
- Train vibration energy falls mainly in the I-2 Hz band, which is reduced well by HEPI. Some falls just above the HEPI band.

Remaining tasks

- Complete basic functionality on 6 more payloads
- Optimized sensor gains and whitening to make saturation less likely during extreme storms.
- Lock/unlock scripts, interfaced with watchdog function, to automate HEPI operation.
 - 3-stage watchdog, switches among servo & sensor correction, servo only, offset only, or HEPI off.
 - Simplified operator's EPICS screen.

Methods for improvement

- Resonant gain in the geophone-based inertial-feedback controller to lower the stack mode excitation, and/or the test mass bounce mode. This is a challenge, as it makes sensor correction filter performance more sensitive to small plant changes, perhaps involving non-minimum phase zeros; we will try it of course.
- Control reallocation from test mass suspension OSEMS to HEPI. This will certainly be done at tidal frequencies, where the blend effects will have only a small effect on sensor correction.
- Adaptive sensor correction, to adjust the correction filter as conditions change. This is under study at LASTI.

