

Towards an Astrophysics-Based Burst ETG Tuning

Keith Thorne

Penn State University Relativity Group

LIGO-G040349-00-Z

August 19, 2004

Difficulties in Burst ETG Tuning

- Lack of good source models, waveforms for "bursts"
 - Have used non-physical Sine-Gaussian, Gaussians instead
- Focus has been "best upper limit"
 - Makes no use of distributions in amplitude from source models
- Figure-of-merit (h₅₀) drawn from detector performance

"Upper-Limit" Burst ETG Tuning

- Goal was expectation of much less than 1 false event over the science run to yield strongest upper limit
- ETGs tuned to meet false event rate expectation and simultaneously minimize signal strength where detection efficiency was 50% (h₅₀).
- Used minimum-uncertainty wave packets (low-Q Sine Gaussians) at selected frequencies
- BUT this is only a fraction of the "burst' phase space (P. Sutton)
 - » Phase-space extends along frequency, duration, bandwidth axes
- HOW should ETGs balance optimization amongst different waveforms in that phase space?

LIGO-G040349-00-Z

August 19, 2004

ETG Tuning Investigation

- Each ETG has multiple parameters controlling performance
 - » This gives several ways to tune to achieve the same false rate
- Can these different tunings be optimal for different waveforms in the "burst" phase space?
- Can different ad-hoc figures-of-merit (h₅₀, h₉₀) select different ETG tunings for optimization, even on the same waveform?
- Carried out a study (Jason Rothenberger REU)
 - » Used BlockNormal on S2 playground
 - » Added 576Hz Sine-Gaussians at two durations (5ms, 100ms)
 - » Only varied two of the "knobs" (ρ (change-point) and ν (event variance))
 - » Studied two ad-hoc figures-of-merit (h₅₀, h₉₀) for single IFO (H1)

LIGO-G040349-00-Z

August 19, 2004

Tuning depends on signal duration

 For same false rate, different tunings optimize for different durations of the same waveform

LIGO-G040349-00-Z

August 19, 2004

Tuning depends on Figure-Of-Merit

Different optimization behavior for h₅₀, h₉₀

August 19, 2004

An improved tuning process

- Tuning Figure-Of-Merit tied to the science goals
- <u>Science Goal</u>: For a given false rate, detect the greatest number of sources from an astrophysical distribution
- This detection rate is a convolution of the detection efficiency (ε) and the source distribution probability (P) as functions of the signal strength

- Simple examples of source distributions
 - » Cosmologic distribution of "standard candles" $P(h) \sim 1/h^4$
 - » Galactic Disk Distribution of "standard candles" $P(h) \sim 1/h^3$

LIGO-G040349-00-Z

August 19, 2004

Next Steps

- Study 'detection rate' figure-of-merit using simple source models, same sine-Gaussians
 - » Determine a different tuning is now optimal
- Move on to more sophisticated studies
 - » Random white noise burst simulation
 - » Distribution of Galactic burst sources (candidates?)
- Pursue statistical tests which utilize distributions in signal strength
 - » Non-parametric (Mann-Whitney)

LIGO-G040349-00-Z