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Motivations

Ground Based Interferometer are Limited by Newtonian Noise under 10 Hz

Seismic Attenuation was Designed to Match that Limit

Recent Calculations Show the Possibility of Suppression of 
Newtonian Noise by Suspending the Test Masses in Deep Caves 



Cella Suppression of Newtonian Noise

Suppression of NN by a Factor of 10-6 in Amplitude, 30 in Frequency 
Seismic Attenuation Must be Redesigned to Match the New Limit

Giancarlo Cella Draft

*1/100 Underground Seismic Amplitude

Horizontal Achievable with Longer Wires in Wells
Vertical Attenuation Requires New Development



Horizontal Attenuation

Filter
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Existing MGAS Spring

Control 
LVDT

Magnet

Coil

Practical Limit 200mHz
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Frequency 
Tuning

Method to Lower the Resonant Frequency below the 
Mechanical Limitations 
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Variable Gain

Control Circuit

Actuator

MGAS
Blade

Control LVDT
Thermal 

Compensation 

100÷300 sec

• LVDT

• Variable Gain 

• Amplificator-Voice Coil

Tunable spring in parallel 
with MGAS spring 

Set Point Integrator Thermal Drift Correction( )
MGAS already neutralize > 90% of cantilever spring stiffness

Circuit corrects the last few per cent of stiffness and stabilizes performance



Payload



Characterization Work

• Determination of the Working Point

• Circuit Calibration

• Frequency behavior as a function of the Gain

• Q Factor Analysis
Impulse Response

Frequency Response  



After fixing the vertical height to the minimum frequency point 
we change the Gain to find the frequency  behavior vs. gain
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Q Factor Analysis; Two Methods

Fitting the Resonant Width in the 
Transfer Function 

Fitting the Damped Exponential in 
Free Oscillations
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Lowering the system stiffness

As the Transfer Function is shifted to lower frequencies,

The Q factor decreases
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Q Factor Analysis
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Impulse Response Frequency Response

Both methods show a quadratic behavior for the Q factor

Implies structural, non viscous, damping



Need for Thermal Compensation
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expansion coefficient given 
by the Young’s modulus

Eα

Virginio Sannibale et al.

y

Y

Thermal Compensation 
Circuit

100÷300sec

The large thermal dependence of the blade working point 
with temperature, at low stiffness, makes it practically 

impossible to obtain very low resonant frequencies 



Overnight Blade Tip Position stability Integrated on 
10 Period
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These residuals are mainly the r.m.s. 100 mHz oscillator 
resonance excited by the seismic activity



Power Considerations

The Power consumption is of the order of  10mW



Two Anomalies at Low Frequency are Discovered

1. Slower Slope in the Lower Frequency Transfer Function 
Measurements
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Transfer Function Measurements with 
different Excitation Amplitude
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The slope does not change 
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The Slope does not 
depends on the 
integration time



Slope for Different Vertical Positions
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Need for more 
investigations



Second anomaly founded
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• So far the working point to frequency 
dependence has always been observed to be 
hyperbolic, getting narrower at lower 
frequency

• At lower frequency we find a departure 
from the hyperbolic behavior (the fit in the 
bottom data set is a fourth power polynomial)

• We suppose that higher order effect may be 
taking over  when the anti-spring gets close 
to fully neutralize the spring constant

• The newly observed behavior is 
coincidental with the departure from 1/f2 of 
the attenuation transfer function

• We do not know yet if the two anomalous 
effects are correlated.



Is this useful for LIGO??

Vertical 
Attenuation

Horizontal 
Attenuation

the LIGO Deep Fall Back solution prototype for one-pier preattenuators



Bellow equivalent springs

Cantilevers

350 Kg Payload

DFBS prototype



Real time



DFBS Prototype

So far driven down to 120mHz despite the additional 
springs (4/3 of the equivalent bellow stiffness) in 

fully passive configuration

Expect ≤ 30mHz if tuned with  electromagnetic anti-spring

attenuation plateau at 10-3 proven on preceding 
prototypes (expect similar performance)



• This development of Electromagnetic Correction Springs was 
designed to boost the Low Frequency attenuation performance of 
Geometric Anti Springs for future Underground Low Frequency 
Gravitational Wave Interferometric Detectors (Horizontal 
Attenuation was always easily available)

• This development allows for further depression of seismic 
perturbations, beyond the performance of the Superattenuators,  
reaching down to 1 Hz and even below.  

Conclusions
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• The retrofitting of this technology on existing system like the
LIGO deep fall back pre-isolator solution may allow the 
introduction of attenuation factors as large as one thousand for
frequencies above 1 Hertz

• Sizeable attenuation at the micro seismic peak at 150 mHz can be 
obtained as well

Conclusions
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Next Steps
• Find the source of the less then 1/f2 behavior 

• Repeat the Measurements with Accelerometers

• Study and Reduce the Control Circuit Noise Improving  
some of its Performances (Yanyi Chen)

• Make a Mechanical Thermal Compensation 

• Use this Seismic Attenuation System on the Mexican 
Hat Interferometer (Barbara Simoni)
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