Optical Coatings R&D Status

Gregory Harry

Massachusetts Institute of Technology - On Behalf of the Coating Working Group -

> August, 2004 LSC Meeting Hanford

Reminder of Coating Thermal Noise

LIGO

Sapphire Mirrors Silica Mirrors 165 Mpc BNS Range 140 Mpc BNS Range y quant. y quant. Total internal thermal Total internal thermal Substrate Substrate Coating Coating 10-22 **10⁻²²**²² Thermoelastic Thermoelastic Total noise Total noise (THZH/L) 10⁻²³ 2³ 2³ h (1/Hz^{1/2}) **10⁻²³**²³ **10⁻²⁴** 24 **10**⁻²⁴ **10**⁻²⁵ 10-25 1000 10 100 1000 10 100 f (Hz) f (Hz) $S_{x}(f) = 2 k_{B}T / (\pi^{2} f^{2}) W_{diss} /$

State of Mechanical Loss Studies c. Jan 2004

Coating Mechanical Loss

Layers 30 60 2 30 30 30 30 30 30	Materials ^a $\lambda/4$ SiO ₂ - $\lambda/4$ Ta ₂ O ₅ ^a $\lambda/8$ SiO ₂ - $\lambda/8$ Ta ₂ O ₅ ^a $\lambda/4$ SiO ₂ - $\lambda/4$ Ta ₂ O ₅ ^a $\lambda/8$ SiO ₂ - $3\lambda/8$ Ta ₂ O ₅ ^a $3\lambda/8$ SiO ₂ - $\lambda/8$ Ta ₂ O ₅ ^b $\lambda/4$ SiO ₂ - $\lambda/4$ Ta ₂ O ₅ ^c $\lambda/4$ SiO ₂ - $\lambda/4$ Ta ₂ O ₅ ^d $\lambda/4$ SiO ₂ - $\lambda/4$ Ta ₂ O ₅	2.7 10 ⁻⁴ 2.7 10 ⁻⁴ 2.7 10 ⁻⁴ 3.8 10 ⁻⁴	 Loss is caused by internal friction in materials, not by interface effects Differing layer thickness allow individual material loss angles to be determined φ_{Ta2O5} = 4.6 10⁻⁴ φ_{SiO2} = 0.2 10⁻⁴ φ_{AI2O3} = 0.1 10⁻⁴ φ_{Nb2O5} = 6.6 10⁻⁴
30	$b\lambda/4$ SiO ₂ – $\lambda/4$ Nb ₂ O ₅	2.8 10 ⁻⁴	
43	$e\lambda/4 AI_2O_3 - \lambda/4 Ta_2O_5$	2.9 10 -4	Goal : $\phi_{coat} = 5 \ 10^{-5}$
a I MA/Virgo	Lvon France		/ 0001

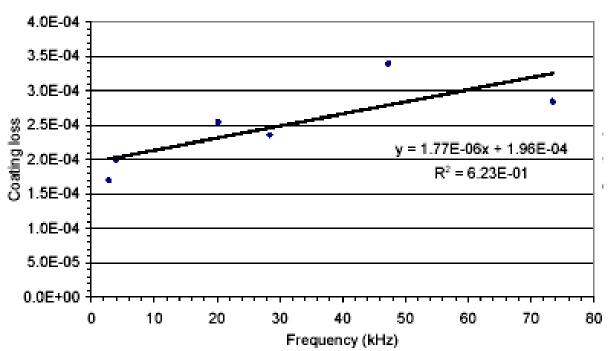
^a LMA/Virgo, Lyon, France

LIGO

^b MLD Technologies, Mountain View, CA

^c CSIRO Telecommunications and Industrial Physics, Sydney, Australia

^d Research-Electro Optics, Boulder, CO

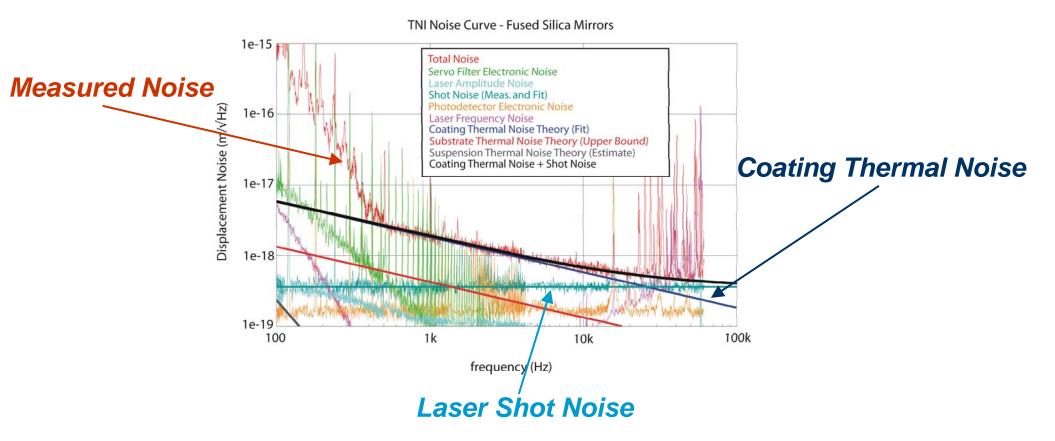

^e General Optics (now WavePrecision, Inc) Moorpark, CA

Frequency Dependence of Coating Loss

Evidence of frequency dependence of coating mechanical loss
Coating loss lower at lower frequencies, so in LIGO's favor
Primarily in SiO₂
Frequency dependence

LIGO

known in bulk silica
Results rely on small number of thin sample modes


30 λ/8 tantala 3λ/8 silica

 $\phi_{Ta2O5} = (4.2 + - 0.4) \ 10^{-4} + f \ (0.4 + - 0.9) \ 10^{-9} \\ \phi_{SiO2} = (0.4 + - 0.3) \ 10^{-4} + f \ (2.7 + - 0.9) \ 10^{-9}$

TNI Result

1 cm long arm cavitites, 0.15 mm laser spot size
Consistent with ~ 4 10⁻⁴ coating loss angle

LIGO

- Working with 2 vendors
 LMA/Virgo in Lyon, France
 CSIRO in Sydney Australia
- LMA Progress

LIGO

- •Unsuccessful attempt to coat with HfO₂ as high index material
- •Single layer coatings of both SiO₂ and Ta₂O₅
- •Four coatings (Formulas 1-4) runs with TiO₂ dopant in Ta₂O₅
 - •Each run had higher TiO₂ concentration
 - •Final run in large coater
 - •Formulas 1,3,4 also on sapphire substrates

•CSIRO Progress

- •Two coating runs with SiO2/Ta2O5
 - Secondary ion gun grid adjusted between runs

•Study of stoichiometry, optical loss, and Young's modulus of Ta₂O₅

Titania Dopant in Tantala

Work done in collaboration with LMA/Virgo in Lyon, France as part of advanced LIGO coating research

 $\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5 \operatorname{Coatings}$ with $\operatorname{TiO}_2 \operatorname{dopant}$

	Loss Angle			
Dopant Cond	c. Thin	Thick		
None	2.7+/-0.1 10-4	(2.5 +/- 0.4) 10 ⁻⁴ + f (14+/-9) 10 ⁻¹⁰		
Low	1.8+/-0.1 10-4	$(1.8 \pm 0.9) 10^{-4} \pm f(24 \pm 0.9) 10^{-10}$		
Medium	1.6+/-0.1 10-4	$(1.3 + - 0.3)10^{-4} + f(18 + -7)10^{-10}$		
High	*2.1+/-0.1 10-4	(1.4 +/- 0.4) 10 ⁻⁴ + f (2+/-8) 10 ⁻¹⁰		
*preliminary				

Increasing dopant concentration reduces mechanical loss

- How far can this effect be pushed?
- Is there a better dopant?

LIGO

• Will this compromise optical performance?

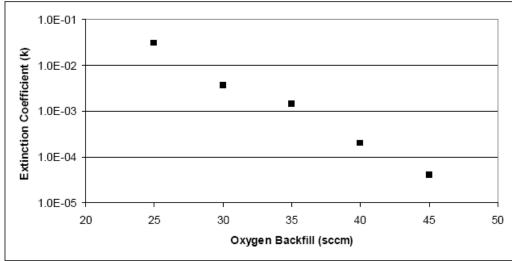
Secondary Ion-beam Bombardment And Mechanical Loss

LIGO

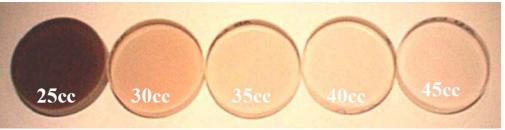
Work done in collaboration with CSIRO in Sydney, Australia as part of advanced LIGO coating research

 $\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5 \operatorname{Coatings}$

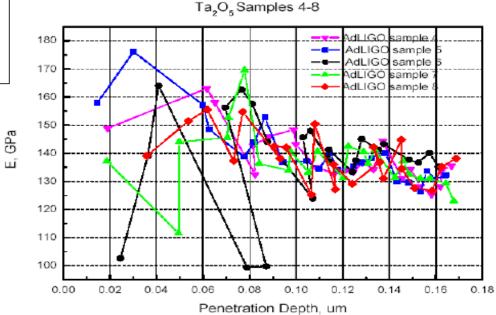
Mode	Thin Sample ϕ_{coat}		
	Grid 1	Grid 2	
7	4.1 10 -4	3.2 10 ⁻⁴	
8	4.2 10 ⁻⁴	3.1 10 -4	
9	5.0 10⁻⁴	4.0 10 -4	
10	4.1 10 ⁻⁴	3.5 10 ⁻⁴	
12	4.4 10 ⁻⁴	2.3 10 -4	


Thick Sample $\phi = (4.1 \pm -0.6) 10^{-4} \pm f(1 \pm -13) 10^{-10}$

Grid was adjusted from 1 to 2 to increase uniformity


- How far can this effect be pushed?
- Will this compromise optical performance?

LIGO Stoichiometry Effects on Optical Loss and Young's Modulus


Modeled optical loss of unannealed Ta_2O_5 at 1.064 μ m vs oxygen flow rate

Young's modulus vs probe penetration depth for samples with different stoichiometery

Visible appearance of samples

Future Plans

More study of coatings on sapphire substrates
 Start using alumina as low index material
 Measure Young's modulus of alumina

• With LMA/Virgo

LIGO

•Experiment with new dopants for Ta₂O₅

•Examine Si/O/N alloy

•Possibly explore other high index materials, HfO₂ again?

• With CSIRO

•Measure mechanical loss of Ta₂O₅ on varying stoichiometry samples

•Explore effects of changes in annealing cycle on mechanical loss in Ta₂O₅/SiO₂