High Optical Power Test Facility - Status

Bram Slagmolen

ACIGA-UWA

First lock, auto-alignment and 10W laser installation

LSC August 2004 - G040317-00-Z

Gingin Test 1/3 (Gingin Strawmann)

Placement of the ITM substrate inside the cavity

- ITM substrate of Sapphire (50 ppm/cm absorption)
- Cavity waist (cold): ~8.6 mm
- > TEM₀₀ power built-up ~800

HOPTF Test 1 (cont.)

ITM parameters

- Circulating power with 7W input: ~5.5 kW.
- Thermal lensing induced ROC of ITM: ~230m.
- Cavity waist (hot): ~6.6 mm.
- Waist position with thermal lensing will be moved away from the ITM towards the ETM.
- Use of a Fused Silica thermal compensation plate to compensate the thermal lensing in the ITM.

Laser Room

- Preliminary cavity alignment with 500mW NPRO laser.
- Faraday Isolator(FI-1, FI-2 and FI-3), T=91%.
- PMC locking bandwidth ~30kHz.
- PMC transmission (F=200), 85%.
- Additional faraday isolator (FI-3) preventing optical feedback into the PMC locking system.

Δ

Input-Bench

Input-Bench accommodates the suspended cavity modematching telescope, longitudinal sensing and autoalignment sensing.

Also the Hartmann Wave-front Sensor.

Input -Bench (2)

Hartmann Sensor

- ~80mm diameter sensor beam through ITM.
- Sensor beam at $\sim 10^{\circ}$ with the optical axis of the cavity.

Initial Suspended Cavity

Using BK7 optics initially to try to lock the suspended cavity.

LIGO SOS, placed on top of a 900mm x 600mm breadboard.

 Breadboard supported by 4 bolts, with no further isolation.

Replacement of the BK7 optics by the Sapphire optics, when the system is running reliably.

LSC August 2004 - G040317-00-Z

Gingin High Optical Power Test Facility (AIGO)

Drawing: Tim Slade

Installation of the ITM and ETM

Mark Barton (Caltech) visited the AIGO lab, providing help in assembling and installation of the BK7 optics.

> David Ottaway (MIT) visited the lab help initiated cavity locking.

ITM residual motion

- Test masses have local damping.
- ITM SOS is placed on a breadboard, providing no advanced seismic isolation.
- Even so, the system can be locked.
- ITM residual motion, from the OSEMs.
 - LSC <1µm @1Hz.
 - ASC-P ~7.5mrad @1Hz.
 - ASC-Y ~3mrad @1Hz.

Cavity lock-up

NPRO laser is locked longitudinal to the suspended cavity, with a bandwidth ~20kHz.

Longitudinal lock is reliable and repeatable over long periods of time (~1h).

3.0

res. Mode 2.5 2.0 Long signal [V] 1.5 Y Offset X Offset 1.0 Yaw Pit Refl 0.5 Trans. 0.0 -10 -15-5 time [sec]

LSC August 2004 - G040317-00-Z

Auto-alignment installation

- Wave-front sensing is employed in the autoalignment system.
- Galvanometers actuate for off-set in the farfield, while the ITM is actuated for tilt in the near-field.
- QPD centering loops have a unity gain bandwidth of 100Hz, with a suppression of 60dB @1Hz. NORTH 1.2m x 3m input table

LSC August 2004 - G040317-00-Z

X/Y beam-offset (Far-Field)

- 2 galvanometers with small mirrors steering the beam in X/Y onto the ITM.
- Far-Field unity gain bandwidth ~80Hz, with a suppression of ~50dB @1Hz.

Pitch & Yaw (Near-Field)

- Near-Field actuation is applied to the ITM pitch and yaw.
- Near-Field unity gain bandwidth ~3Hz, with a suppression of ~20dB @1Hz.
- Limited by SOS damping (using PIT/YAW Test input channels)

10W laser installation

ACIGA group of the University of Adelaide have installed the 10W laser.

David Hosken installing the 10W laser.

LSC August 2004 - G040317-00-Z

Gingin High Optical Power Test Facility (AIGO)

14

HOPTF 10W Laser Progress to date

> 10W air-cooled slave laser installed at AIGO.

- 10W CW output in traveling-wave configuration, $M^2_{x,v} < 1.1$
- Passive injection-locking demonstrated.

HOPTF 10W Laser Future plans

- During the LSC Meeting installation of the PDH servo control electronics.
- Complete 10W CW Injection-locked laser with active feedback control operational by early September.

LSC August 2004 - G040317-00-Z

Gingin High Optical Power Test Facility (AIGO)

16

LSC August 2004 - G040317-00-Z

6-ProjectTimeLine_Aug04V1.xls

High Power Test Project Timeline Bram Slagmolen - 12/08/2004

	24-May	31-May	07-Jun	14-Jun	21-Jun	28-Jun	05-Jul	12-24	19-71	26-Jul	02-449	09-Aug	26-Aug	23-Aug	30-Aug	06-Sep	13-Sep	20-Sep	27-Sep	04-0ct	11-0ct	18-Oct	25-Oct Test J	7	30-Nov	662-62
Lock 80m BK7 cavity																										_
Install new Control DSP (need two DSP+computers) Install Compensation Plate (need CP mount + feedthrough) Install Sapphire Optics										Stev	e on	leave	e 1wi													
Installing auto-aligment optimise AA Install 10W laser	-																									_
Install Hartmann Sensor (532nm laser) Upgrade MMT (waiting for delivery of optics)																										_
Upgrade the vacuum system (tanks have been vented) Install the NW400 valve support (cancelled due to struts set up)																										_
All part for 2 complete Isolator at AIGO All parts clean																										_
Two isolator completely assembled "Installation" of 2 isolators, tuned and controlled																										